search
HomeBackend DevelopmentC++Common design patterns in C++ concurrent programming

In C++ concurrent programming, the use of design patterns can improve the readability, maintainability and scalability of the code. Common patterns include: producer-consumer pattern: one thread generates data and other threads consume data. . Reader-writer mode: Multiple readers can access shared resources at the same time, but only one writer can access it. Monitor mode: protects concurrent access to shared resources, enforces synchronization and status checks. Thread pool mode: Create thread groups in advance to avoid the overhead of frequently creating and destroying threads.

C++ 并发编程中的常见设计模式

Common design patterns in C++ concurrent programming

In concurrent programming, the use of design patterns can significantly improve the reliability of the code. Readability, maintainability and scalability. The following lists some common patterns in C++ concurrent programming:

Producer-Consumer Pattern

In this pattern, a producer thread generates data, And one or more consumer threads consume this data. Common implementation methods are to use queues or shared memory.

Example:

class Producer {
public:
    void produce(const T& data) {
        std::lock_guard<std::mutex> lock(queue_mutex);
        queue.push(data);
    }
private:
    std::queue<T> queue;
    std::mutex queue_mutex;
};

class Consumer {
public:
    void consume() {
        std::unique_lock<std::mutex> lock(queue_mutex);
        if (queue.empty()) {
            condition_variable.wait(lock);
        }
        const T& data = queue.front();
        queue.pop();
        lock.unlock();
        // ...
    }
private:
    std::shared_ptr<Producer> producer;
    std::condition_variable condition_variable;
    std::mutex queue_mutex;
};

Reader-Writer Mode

This mode allows multiple readers to access shared resources at the same time, but Only one writer can access it. Reentrant locks or read-write locks are often used to implement this pattern.

Example:

class ReadWriteLock {
public:
    void read_lock() {
        while (write_locked) {
            unique_lock<std::mutex> lock(read_mutex);
            read_count++;
        }
    }

    void read_unlock() {
        std::lock_guard<std::mutex> lock(read_mutex);
        read_count--;
    }

    void write_lock() {
        std::lock_guard<std::mutex> lock(write_mutex);
        while (read_count > 0) { /* 等待读完成 */}
        write_locked = true;
    }

    void write_unlock() {
        std::lock_guard<std::mutex> lock(write_mutex);
        write_locked = false;
    }

private:
    bool write_locked = false;
    int read_count = 0;
    std::mutex read_mutex;
    std::mutex write_mutex;
};

Monitor Pattern

Monitor pattern protects concurrency by limiting data access to a single object Access shared resources. Monitor objects encapsulate data and operations and enforce synchronization and status checking.

Example:

class Account {
public:
    void deposit(int amount) {
        std::lock_guard<std::mutex> lock(balance_mutex);
        balance += amount;
    }

    int withdraw(int amount) {
        std::lock_guard<std::mutex> lock(balance_mutex);
        if (amount <= balance) {
            balance -= amount;
            return amount;
        }
        return 0;
    }

    int get_balance() {
        std::lock_guard<std::mutex> lock(balance_mutex);
        return balance;
    }

private:
    int balance = 0;
    std::mutex balance_mutex;
};

Thread pool mode

Thread pool mode provides a pre-created thread group that is controlled by the client Used by end threads. By using a thread pool, you can avoid the overhead of frequently creating and destroying threads.

Example:

class ThreadPool {
public:
    ThreadPool(int num_threads) {
        for (int i = 0; i < num_threads; i++) {
            threads.emplace_back(std::thread([this] {
                while (true) {
                    std::function<void()> task;
                    {
                        std::unique_lock<std::mutex> lock(tasks_mutex);
                        if (tasks.empty()) {
                            condition_variable.wait(lock);
                        }
                        task = std::move(tasks.front());
                        tasks.pop();
                    }
                    task();
                }
            }));
        }
    }

    void submit(std::function<void()> task) {
        std::lock_guard<std::mutex> lock(tasks_mutex);
        tasks.push(std::move(task));
        condition_variable.notify_one();
    }

private:
    std::vector<std::jthread> threads;
    std::queue<std::function<void()>> tasks;
    std::mutex tasks_mutex;
    std::condition_variable condition_variable;
};

The above is the detailed content of Common design patterns in C++ concurrent programming. For more information, please follow other related articles on the PHP Chinese website!

Statement
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn
Using XML in C  : A Guide to Libraries and ToolsUsing XML in C : A Guide to Libraries and ToolsMay 09, 2025 am 12:16 AM

XML is used in C because it provides a convenient way to structure data, especially in configuration files, data storage and network communications. 1) Select the appropriate library, such as TinyXML, pugixml, RapidXML, and decide according to project needs. 2) Understand two ways of XML parsing and generation: DOM is suitable for frequent access and modification, and SAX is suitable for large files or streaming data. 3) When optimizing performance, TinyXML is suitable for small files, pugixml performs well in memory and speed, and RapidXML is excellent in processing large files.

C# and C  : Exploring the Different ParadigmsC# and C : Exploring the Different ParadigmsMay 08, 2025 am 12:06 AM

The main differences between C# and C are memory management, polymorphism implementation and performance optimization. 1) C# uses a garbage collector to automatically manage memory, while C needs to be managed manually. 2) C# realizes polymorphism through interfaces and virtual methods, and C uses virtual functions and pure virtual functions. 3) The performance optimization of C# depends on structure and parallel programming, while C is implemented through inline functions and multithreading.

C   XML Parsing: Techniques and Best PracticesC XML Parsing: Techniques and Best PracticesMay 07, 2025 am 12:06 AM

The DOM and SAX methods can be used to parse XML data in C. 1) DOM parsing loads XML into memory, suitable for small files, but may take up a lot of memory. 2) SAX parsing is event-driven and is suitable for large files, but cannot be accessed randomly. Choosing the right method and optimizing the code can improve efficiency.

C   in Specific Domains: Exploring Its StrongholdsC in Specific Domains: Exploring Its StrongholdsMay 06, 2025 am 12:08 AM

C is widely used in the fields of game development, embedded systems, financial transactions and scientific computing, due to its high performance and flexibility. 1) In game development, C is used for efficient graphics rendering and real-time computing. 2) In embedded systems, C's memory management and hardware control capabilities make it the first choice. 3) In the field of financial transactions, C's high performance meets the needs of real-time computing. 4) In scientific computing, C's efficient algorithm implementation and data processing capabilities are fully reflected.

Debunking the Myths: Is C   Really a Dead Language?Debunking the Myths: Is C Really a Dead Language?May 05, 2025 am 12:11 AM

C is not dead, but has flourished in many key areas: 1) game development, 2) system programming, 3) high-performance computing, 4) browsers and network applications, C is still the mainstream choice, showing its strong vitality and application scenarios.

C# vs. C  : A Comparative Analysis of Programming LanguagesC# vs. C : A Comparative Analysis of Programming LanguagesMay 04, 2025 am 12:03 AM

The main differences between C# and C are syntax, memory management and performance: 1) C# syntax is modern, supports lambda and LINQ, and C retains C features and supports templates. 2) C# automatically manages memory, C needs to be managed manually. 3) C performance is better than C#, but C# performance is also being optimized.

Building XML Applications with C  : Practical ExamplesBuilding XML Applications with C : Practical ExamplesMay 03, 2025 am 12:16 AM

You can use the TinyXML, Pugixml, or libxml2 libraries to process XML data in C. 1) Parse XML files: Use DOM or SAX methods, DOM is suitable for small files, and SAX is suitable for large files. 2) Generate XML file: convert the data structure into XML format and write to the file. Through these steps, XML data can be effectively managed and manipulated.

XML in C  : Handling Complex Data StructuresXML in C : Handling Complex Data StructuresMay 02, 2025 am 12:04 AM

Working with XML data structures in C can use the TinyXML or pugixml library. 1) Use the pugixml library to parse and generate XML files. 2) Handle complex nested XML elements, such as book information. 3) Optimize XML processing code, and it is recommended to use efficient libraries and streaming parsing. Through these steps, XML data can be processed efficiently.

See all articles

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

Video Face Swap

Video Face Swap

Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Tools

WebStorm Mac version

WebStorm Mac version

Useful JavaScript development tools

EditPlus Chinese cracked version

EditPlus Chinese cracked version

Small size, syntax highlighting, does not support code prompt function

mPDF

mPDF

mPDF is a PHP library that can generate PDF files from UTF-8 encoded HTML. The original author, Ian Back, wrote mPDF to output PDF files "on the fly" from his website and handle different languages. It is slower than original scripts like HTML2FPDF and produces larger files when using Unicode fonts, but supports CSS styles etc. and has a lot of enhancements. Supports almost all languages, including RTL (Arabic and Hebrew) and CJK (Chinese, Japanese and Korean). Supports nested block-level elements (such as P, DIV),

Dreamweaver CS6

Dreamweaver CS6

Visual web development tools

Safe Exam Browser

Safe Exam Browser

Safe Exam Browser is a secure browser environment for taking online exams securely. This software turns any computer into a secure workstation. It controls access to any utility and prevents students from using unauthorized resources.