When dealing with big data, the choice of Java framework is crucial. Popular frameworks include Hadoop (for batch processing), Spark (high-performance interactive analytics), Flink (real-time stream processing), and Beam (unified programming model). Selection is based on processing type, latency requirements, data volume, and technology stack. Practical examples show using Spark to read and process CSV data.
Java framework selection in big data processing
In today's big data era, use appropriate Java frameworks to process massive data Crucial. This article will introduce some popular Java frameworks and their pros and cons to help you make an informed choice based on your needs.
1. Apache Hadoop
2. Apache Spark
3. Apache Flink
4. Apache Beam
Actual combat Case: Reading and processing CSV data using Spark
import org.apache.spark.sql.Dataset; import org.apache.spark.sql.Row; import org.apache.spark.sql.SparkSession; public class SparkCSVExample { public static void main(String[] args) { // 创建 SparkSession SparkSession spark = SparkSession.builder().appName("Spark CSV Example").getOrCreate(); // 从 CSV 文件读取数据 Dataset<Row> df = spark.read() .option("header", true) .option("inferSchema", true) .csv("path/to/my.csv"); // 打印数据集的前 10 行 df.show(10); // 对数据集进行转换和操作 Dataset<Row> filtered = df.filter("age > 30"); filtered.show(); } }
Selection basis
Choosing the right Java framework depends on your specific needs:
The above is the detailed content of Java framework selection in big data processing. For more information, please follow other related articles on the PHP Chinese website!