search
HomeTechnology peripheralsAIA new milestone in controllable nuclear fusion, AI achieves fully automatic optimization of dual tokamak 3D field for the first time, published in Nature sub-issue

A new milestone in controllable nuclear fusion, AI achieves fully automatic optimization of dual tokamak 3D field for the first time, published in Nature sub-issue
Editor |

Now, at the Princeton Plasma Physics Laboratory (PPPL), scientists are using artificial intelligence to solve a pressing challenge facing humanity: generating clean, reliable energy through fusion plasma.

Unlike traditional computer code, machine learning is more than just a list of instructions. It can analyze data, infer relationships between features, and learn and adapt from new knowledge.

PPPL+ researchers believe this ability to learn and adapt could improve their control of fusion reactions in a number of ways. This includes perfecting the design of the vessel surrounding the superheated plasma, optimizing heating methods, and maintaining stable control of the reaction over increasingly longer periods of time.

Recently, PPPL’s AI research has achieved significant results. PPPL researchers explain how they use machine learning to avoid magnetic disturbances and stabilize fusion plasmas. This achievement is of great significance for achieving sustainable fusion energy. By analyzing and training large amounts of data, the researchers successfully developed a machine learning model that can accurately

A new milestone in controllable nuclear fusion, AI achieves fully automatic optimization of dual tokamak 3D field for the first time, published in Nature sub-issueIllustration: The two tokamak shown above ( Machine learning code for detecting and eliminating plasma instabilities is deployed in DIII-D and KSTAR devices. (Source: General Atomics and Korea Fusion Energy Research Institute)
SangKyeun Kim, PPPL research physicist and lead author of the discussion paper, said: "The results are impressive because we were able to use the same The code achieves these results on two different tokamak devices."

The related research is titled "

Highest fusion performance without harmful edge energy bursts in tokamak

" and was published in "#. ##Nature Communications》On.

Paper link: A new milestone in controllable nuclear fusion, AI achieves fully automatic optimization of dual tokamak 3D field for the first time, published in Nature sub-issuehttps://www.nature.com/articles/s41467-024-48415-w

Suppressing "edge explosions" in fusion

In order to be economically competitive in the fusion energy market, it must achieve sufficient ion density (n), temperature (T) while maintaining fusion ) and the high fusion triple product (nτT) of the energy confinement time (τ).

Ions require a sufficient quality factor (G∝ατT) to achieve high fusion denaturation, and this increases with the ion confinement mass (H89: normalized energy confinement time).

In order for the tokamak design to become a viable option for fusion reactors, reliable methods must be developed to periodically suppress edge burst events without affecting G.

Scientists have used various methods to mitigate fringe outbreaks. One effective approach is to utilize resonant magnetic perturbation (RMP) of external 3D field coils, which has proven to be one of the most promising methods for edge burst suppression.

Illustration: 3D field coil structure in a tokamak. (Source: Paper) A new milestone in controllable nuclear fusion, AI achieves fully automatic optimization of dual tokamak 3D field for the first time, published in Nature sub-issue

However, this scenario is costly, resulting in significant deterioration of H89 and G compared to standard high-confinement plasma systems, thereby weakening the economic prospects. In addition, 3D fields also increase the risk of catastrophic core instability, known as disruption, which is even more severe than edge blowout. Therefore, the safe accessibility and compatibility of edge-burst-free operations and high-constraint operations urgently need to be explored.

First implementation on two tokamak

This research conducted an innovative and integrated 3D field on two tokamak, KSTAR and DIII-D for the first time Optimization, by combining machine learning (ML), adaptive and multi-machine capabilities, to automatically access and achieve almost completely edgeless burst states while improving plasma fusion performance from the initial burst suppression state, which is the edgeless future reactor A major milestone in the outbreak's run.

This is achieved by exploiting the lag between edgeless burst onset and loss in real time to enhance plasma confinement, while expanding ML's capabilities in capturing physics and optimizing nuclear fusion technology.

Illustration: Performance comparison of ELM-free discharge in DIII-D and KSTAR tokamak. (Source: paper) A new milestone in controllable nuclear fusion, AI achieves fully automatic optimization of dual tokamak 3D field for the first time, published in Nature sub-issue

This integration helps:
  • Highly enhanced plasma confinement, reaching the highest fusion G in the Edge Localized Mode-free (ELM-free) scenario of the two machines, with G increased by up to 90%;

  • First fully automated 3D field optimization using ML-based 3D field simulator;

  • Simultaneous establishment of burst suppression from the beginning of plasma operation , achieving almost complete edge-free burst operation close to ITER-related levels. This achievement represents a crucial step for future devices such as the International Thermonuclear Experimental Reactor (ITER), where reliance on empirical RMP optimization is no longer a feasible or acceptable approach.

"There are instabilities in the plasma that can cause serious damage to the fusion device. We cannot use these substances in commercial fusion vessels. Our work advances the field and And shows that artificial intelligence can play an important role in managing fusion reactions to avoid instability while allowing the plasma to generate as much fusion energy as possible," said corresponding author Egemen Kolemen, associate professor in the Department of Mechanical and Aerospace Engineering at PPPL.

Fully Automated ML-Based 3D Field Optimization

In this experiment, a series of discharges are used to find optimized 3D waveforms for safe ELM suppression.

In this context, the study introduces ML techniques to develop novel paths for automated 3D coil optimization and demonstrates the concept for the first time.

A new milestone in controllable nuclear fusion, AI achieves fully automatic optimization of dual tokamak 3D field for the first time, published in Nature sub-issue

Illustration: Real-time RMP optimization algorithm based on machine learning. (Source: Paper)

Researchers developed a surrogate model of the GPEC code (ML-3D) to leverage physics-based models in real time. The model uses ML algorithms to accelerate computation time to the ms level and is integrated into the adaptive RMP optimizer in KSTAR.

ML-3D consists of a fully connected multilayer perceptron (MLP) driven by nine inputs. To train the model, 8490 KSTAR balanced GPEC simulations were utilized.

A new milestone in controllable nuclear fusion, AI achieves fully automatic optimization of dual tokamak 3D field for the first time, published in Nature sub-issue

Illustration: ML-3D model performance. (Source: paper)

The algorithm utilizes the ELM status monitor (Dα) signal to adjust the IRMP in real time, which can maintain sufficient edge 3D fields to access and maintain ELM suppression. At the same time, the 3D field optimizer uses the output of ML-3D to adjust the current distribution on the 3D coil, thus ensuring a safe 3D field to avoid interruptions.

A new milestone in controllable nuclear fusion, AI achieves fully automatic optimization of dual tokamak 3D field for the first time, published in Nature sub-issue

Illustration: Plasma parameters for a fully automated ELM suppressed discharge (#31873) with integrated RMP optimization. (Source: paper)

In KSTAR experiments, the ML-integrated adaptive RMP optimizer triggered in 4.5 seconds and achieved safe ELM suppression in 6.2 seconds.

Research also demonstrates 3D-ML as a viable solution for automating ELM-free access. ML-3D is based on physical models and does not require experimental data, making it directly scalable to ITER and future fusion reactors. This strong applicability to future devices highlights the advantages of ML's integrated 3D field optimization approach. Furthermore, better field optimization and higher fusion performance are expected to be achieved in future devices with higher 3D coil current limitations.

Research successfully optimized controlled ELM-free states in KSTAR and DIII-D devices with highly enhanced fusion performance, covering low-n RMP related to future reactors to nRMP related to ITER = 3 RMP, and achieved the highest level in various ELM-free scenarios in two machines.

A new milestone in controllable nuclear fusion, AI achieves fully automatic optimization of dual tokamak 3D field for the first time, published in Nature sub-issue

Illustration: Plasma parameters for optimized RMP amplitude (#190738) with highly enhanced performance. (Source: paper)

In addition, the innovative integration of ML algorithms with RMP control enables fully automatic 3D field optimization and ELM-free operation for the first time, and with the support of adaptive optimization processes, performance is significantly enhanced . This adaptive approach demonstrates compatibility between RMP ELM suppression and high limits.

Additionally, it provides a robust strategy to achieve stable ELM suppression in long pulse scenarios (lasting more than 45 seconds) by minimizing the loss of limiting and uninductive current fractions.

Notably, significant performance (G) improvement was observed in DIII-D with nRMP = 3 RMP, showing an improvement of more than 90% from the initial standard ELM suppression state. This enhancement is attributed not only to the adaptive RMP control but also to the self-consistent evolution of the plasma rotation. This response enables ELM suppression at very low RMP amplitudes, thereby enhancing the base. This feature is a good example of a system transitioning to an optimal state through a self-organized response to adaptive modulation.

A new milestone in controllable nuclear fusion, AI achieves fully automatic optimization of dual tokamak 3D field for the first time, published in Nature sub-issue

Illustration: Improving discharge performance through adaptive RMP optimization. (Source: paper)

In addition, the adaptive scheme is combined with the early RMP-ramp method to achieve ITER-related ELM-free scenarios with almost completely ELM-free operation. These results confirm that integrated adaptive RMP control is a very promising approach to optimize ELM suppression states, with the potential to address one of the most difficult challenges in achieving practical and economically viable fusion energy.

Reference content: https://phys.org/news/2024-05-ai-intensive-aspects-plasma-physics.html

【 Recommended reading]

The above is the detailed content of A new milestone in controllable nuclear fusion, AI achieves fully automatic optimization of dual tokamak 3D field for the first time, published in Nature sub-issue. For more information, please follow other related articles on the PHP Chinese website!

Statement
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn
DSA如何弯道超车NVIDIA GPU?DSA如何弯道超车NVIDIA GPU?Sep 20, 2023 pm 06:09 PM

你可能听过以下犀利的观点:1.跟着NVIDIA的技术路线,可能永远也追不上NVIDIA的脚步。2.DSA或许有机会追赶上NVIDIA,但目前的状况是DSA濒临消亡,看不到任何希望另一方面,我们都知道现在大模型正处于风口位置,业界很多人想做大模型芯片,也有很多人想投大模型芯片。但是,大模型芯片的设计关键在哪,大带宽大内存的重要性好像大家都知道,但做出来的芯片跟NVIDIA相比,又有何不同?带着问题,本文尝试给大家一点启发。纯粹以观点为主的文章往往显得形式主义,我们可以通过一个架构的例子来说明Sam

阿里云通义千问14B模型开源!性能超越Llama2等同等尺寸模型阿里云通义千问14B模型开源!性能超越Llama2等同等尺寸模型Sep 25, 2023 pm 10:25 PM

2021年9月25日,阿里云发布了开源项目通义千问140亿参数模型Qwen-14B以及其对话模型Qwen-14B-Chat,并且可以免费商用。Qwen-14B在多个权威评测中表现出色,超过了同等规模的模型,甚至有些指标接近Llama2-70B。此前,阿里云还开源了70亿参数模型Qwen-7B,仅一个多月的时间下载量就突破了100万,成为开源社区的热门项目Qwen-14B是一款支持多种语言的高性能开源模型,相比同类模型使用了更多的高质量数据,整体训练数据超过3万亿Token,使得模型具备更强大的推

ICCV 2023揭晓:ControlNet、SAM等热门论文斩获奖项ICCV 2023揭晓:ControlNet、SAM等热门论文斩获奖项Oct 04, 2023 pm 09:37 PM

在法国巴黎举行了国际计算机视觉大会ICCV(InternationalConferenceonComputerVision)本周开幕作为全球计算机视觉领域顶级的学术会议,ICCV每两年召开一次。ICCV的热度一直以来都与CVPR不相上下,屡创新高在今天的开幕式上,ICCV官方公布了今年的论文数据:本届ICCV共有8068篇投稿,其中有2160篇被接收,录用率为26.8%,略高于上一届ICCV2021的录用率25.9%在论文主题方面,官方也公布了相关数据:多视角和传感器的3D技术热度最高在今天的开

复旦大学团队发布中文智慧法律系统DISC-LawLLM,构建司法评测基准,开源30万微调数据复旦大学团队发布中文智慧法律系统DISC-LawLLM,构建司法评测基准,开源30万微调数据Sep 29, 2023 pm 01:17 PM

随着智慧司法的兴起,智能化方法驱动的智能法律系统有望惠及不同群体。例如,为法律专业人员减轻文书工作,为普通民众提供法律咨询服务,为法学学生提供学习和考试辅导。由于法律知识的独特性和司法任务的多样性,此前的智慧司法研究方面主要着眼于为特定任务设计自动化算法,难以满足对司法领域提供支撑性服务的需求,离应用落地有不小的距离。而大型语言模型(LLMs)在不同的传统任务上展示出强大的能力,为智能法律系统的进一步发展带来希望。近日,复旦大学数据智能与社会计算实验室(FudanDISC)发布大语言模型驱动的中

AI技术在蚂蚁集团保险业务中的应用:革新保险服务,带来全新体验AI技术在蚂蚁集团保险业务中的应用:革新保险服务,带来全新体验Sep 20, 2023 pm 10:45 PM

保险行业对于社会民生和国民经济的重要性不言而喻。作为风险管理工具,保险为人民群众提供保障和福利,推动经济的稳定和可持续发展。在新的时代背景下,保险行业面临着新的机遇和挑战,需要不断创新和转型,以适应社会需求的变化和经济结构的调整近年来,中国的保险科技蓬勃发展。通过创新的商业模式和先进的技术手段,积极推动保险行业实现数字化和智能化转型。保险科技的目标是提升保险服务的便利性、个性化和智能化水平,以前所未有的速度改变传统保险业的面貌。这一发展趋势为保险行业注入了新的活力,使保险产品更贴近人民群众的实际

百度文心一言全面向全社会开放,率先迈出重要一步百度文心一言全面向全社会开放,率先迈出重要一步Aug 31, 2023 pm 01:33 PM

8月31日,文心一言首次向全社会全面开放。用户可以在应用商店下载“文心一言APP”或登录“文心一言官网”(https://yiyan.baidu.com)进行体验据报道,百度计划推出一系列经过全新重构的AI原生应用,以便让用户充分体验生成式AI的理解、生成、逻辑和记忆等四大核心能力今年3月16日,文心一言开启邀测。作为全球大厂中首个发布的生成式AI产品,文心一言的基础模型文心大模型早在2019年就在国内率先发布,近期升级的文心大模型3.5也持续在十余个国内外权威测评中位居第一。李彦宏表示,当文心

致敬TempleOS,有开发者创建了启动Llama 2的操作系统,网友:8G内存老电脑就能跑致敬TempleOS,有开发者创建了启动Llama 2的操作系统,网友:8G内存老电脑就能跑Oct 07, 2023 pm 10:09 PM

不得不说,Llama2的「二创」项目越来越硬核、有趣了。自Meta发布开源大模型Llama2以来,围绕着该模型的「二创」项目便多了起来。此前7月,特斯拉前AI总监、重回OpenAI的AndrejKarpathy利用周末时间,做了一个关于Llama2的有趣项目llama2.c,让用户在PyTorch中训练一个babyLlama2模型,然后使用近500行纯C、无任何依赖性的文件进行推理。今天,在Karpathyllama2.c项目的基础上,又有开发者创建了一个启动Llama2的演示操作系统,以及一个

快手黑科技“子弹时间”赋能亚运转播,打造智慧观赛新体验快手黑科技“子弹时间”赋能亚运转播,打造智慧观赛新体验Oct 11, 2023 am 11:21 AM

杭州第19届亚运会不仅是国际顶级体育盛会,更是一场精彩绝伦的中国科技盛宴。本届亚运会中,快手StreamLake与杭州电信深度合作,联合打造智慧观赛新体验,在击剑赛事的转播中,全面应用了快手StreamLake六自由度技术,其中“子弹时间”也是首次应用于击剑项目国际顶级赛事。中国电信杭州分公司智能亚运专班组长芮杰表示,依托快手StreamLake自研的4K3D虚拟运镜视频技术和中国电信5G/全光网,通过赛场内部署的4K专业摄像机阵列实时采集的高清竞赛视频,

See all articles

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

AI Hentai Generator

AI Hentai Generator

Generate AI Hentai for free.

Hot Article

R.E.P.O. Energy Crystals Explained and What They Do (Yellow Crystal)
2 weeks agoBy尊渡假赌尊渡假赌尊渡假赌
Repo: How To Revive Teammates
1 months agoBy尊渡假赌尊渡假赌尊渡假赌
Hello Kitty Island Adventure: How To Get Giant Seeds
1 months agoBy尊渡假赌尊渡假赌尊渡假赌

Hot Tools

SublimeText3 Linux new version

SublimeText3 Linux new version

SublimeText3 Linux latest version

MinGW - Minimalist GNU for Windows

MinGW - Minimalist GNU for Windows

This project is in the process of being migrated to osdn.net/projects/mingw, you can continue to follow us there. MinGW: A native Windows port of the GNU Compiler Collection (GCC), freely distributable import libraries and header files for building native Windows applications; includes extensions to the MSVC runtime to support C99 functionality. All MinGW software can run on 64-bit Windows platforms.

SAP NetWeaver Server Adapter for Eclipse

SAP NetWeaver Server Adapter for Eclipse

Integrate Eclipse with SAP NetWeaver application server.

VSCode Windows 64-bit Download

VSCode Windows 64-bit Download

A free and powerful IDE editor launched by Microsoft

Notepad++7.3.1

Notepad++7.3.1

Easy-to-use and free code editor