Using pipe buffers for flow control ensures safe communication in Goroutines. It allows blocking when the buffer is full when sending data and blocking when the buffer is empty when receiving data: Creating a pipe with a buffer The send data operation blocks when the buffer is empty , receiving data operations will block
How to use pipe buffers for flow control in Goroutine
##Introduction
In Goroutine concurrent programming, a pipe is a data structure used to communicate safely between Goroutines. Pipe buffers are an optional feature in pipes that provide flow control for send and receive operations.Use pipe buffer for flow control
1. Create a pipe with buffer
bufsize := 10 pipeline := make(chan int, bufsize)The above code creates Creates a pipe with buffer size
bufsize.
2. Send data to the pipe
When the pipe buffer is full, theSend operation will block until there is room for more data .
for i := 0; i < 100; i++ { pipeline <- i }
3. Receive data from the pipe
Similarly, when the pipe buffer is empty, theReceive operation will block until there is data Available for reception.
for i := 0; i < 100; i++ { data := <-pipeline fmt.Println(data) }
Practical case
Asynchronous web service
In an asynchronous web service, the pipe buffer can be used to control the incoming The requested rate. By limiting the size of the pipe buffer, we ensure that the server is not overloaded by handling too many requests at the same time. Code example:func main() { bufsize := 10 pipeline := make(chan *http.Request, bufsize) // 启动 HTTP 服务器 http.HandleFunc("/", func(w http.ResponseWriter, r *http.Request) { pipeline <- r }) // 启动 Goroutine 来处理请求 go func() { for { req := <-pipeline // 处理请求 } }() http.ListenAndServe(":8080", nil) }In this case, the size of the buffer is
10, which means the server can handle at most
10 simultaneously requests to prevent problems due to excessive request load.
The above is the detailed content of How to use pipe buffers for flow control in Goroutine?. For more information, please follow other related articles on the PHP Chinese website!

Golang is suitable for rapid development and concurrent programming, while C is more suitable for projects that require extreme performance and underlying control. 1) Golang's concurrency model simplifies concurrency programming through goroutine and channel. 2) C's template programming provides generic code and performance optimization. 3) Golang's garbage collection is convenient but may affect performance. C's memory management is complex but the control is fine.

Goimpactsdevelopmentpositivelythroughspeed,efficiency,andsimplicity.1)Speed:Gocompilesquicklyandrunsefficiently,idealforlargeprojects.2)Efficiency:Itscomprehensivestandardlibraryreducesexternaldependencies,enhancingdevelopmentefficiency.3)Simplicity:

C is more suitable for scenarios where direct control of hardware resources and high performance optimization is required, while Golang is more suitable for scenarios where rapid development and high concurrency processing are required. 1.C's advantage lies in its close to hardware characteristics and high optimization capabilities, which are suitable for high-performance needs such as game development. 2.Golang's advantage lies in its concise syntax and natural concurrency support, which is suitable for high concurrency service development.

Golang excels in practical applications and is known for its simplicity, efficiency and concurrency. 1) Concurrent programming is implemented through Goroutines and Channels, 2) Flexible code is written using interfaces and polymorphisms, 3) Simplify network programming with net/http packages, 4) Build efficient concurrent crawlers, 5) Debugging and optimizing through tools and best practices.

The core features of Go include garbage collection, static linking and concurrency support. 1. The concurrency model of Go language realizes efficient concurrent programming through goroutine and channel. 2. Interfaces and polymorphisms are implemented through interface methods, so that different types can be processed in a unified manner. 3. The basic usage demonstrates the efficiency of function definition and call. 4. In advanced usage, slices provide powerful functions of dynamic resizing. 5. Common errors such as race conditions can be detected and resolved through getest-race. 6. Performance optimization Reuse objects through sync.Pool to reduce garbage collection pressure.

Go language performs well in building efficient and scalable systems. Its advantages include: 1. High performance: compiled into machine code, fast running speed; 2. Concurrent programming: simplify multitasking through goroutines and channels; 3. Simplicity: concise syntax, reducing learning and maintenance costs; 4. Cross-platform: supports cross-platform compilation, easy deployment.

Confused about the sorting of SQL query results. In the process of learning SQL, you often encounter some confusing problems. Recently, the author is reading "MICK-SQL Basics"...

The relationship between technology stack convergence and technology selection In software development, the selection and management of technology stacks are a very critical issue. Recently, some readers have proposed...


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

MantisBT
Mantis is an easy-to-deploy web-based defect tracking tool designed to aid in product defect tracking. It requires PHP, MySQL and a web server. Check out our demo and hosting services.

ZendStudio 13.5.1 Mac
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 English version
Recommended: Win version, supports code prompts!

SublimeText3 Linux new version
SublimeText3 Linux latest version