


C++ virtual function table and polymorphic implementation, how to avoid memory waste
Virtual base classes can optimize virtual function table memory overhead by allowing inheritance from multiple base classes without creating additional virtual function tables. In the optimized code, the shape base class no longer has a virtual function table, and the circle and rectangle classes share the same virtual function table, thus reducing memory consumption.
C++ virtual function table and polymorphic implementation: avoiding memory waste
Introduction
Polymorphism is a key feature in object-oriented programming that allows objects to exhibit different behaviors depending on their type. In C++, polymorphism is implemented through virtual function tables. However, vtables can cause memory waste, especially if there are a large number of objects.
Virtual function table
The virtual function table is a table that contains pointers to virtual functions. When a virtual function is called, the compiler uses the virtual function table to find the correct function implementation. This ensures that the object can call the correct functions defined for its type.
Waste of memory
The virtual function table takes up memory space. For each class, a vtable is created, even if there are no virtual functions in the class. For applications with a large number of objects, this can cause significant memory overhead.
Optimization: Use virtual base classes
One way to avoid virtual function table memory waste is to use virtual base classes. Virtual base classes allow inheritance from multiple base classes without creating additional virtual function tables.
Practical case
Consider the following class hierarchy:
class Shape { public: virtual void draw() = 0; }; class Circle : public Shape { public: void draw() override { // Draw a circle } }; class Rectangle : public Shape { public: void draw() override { // Draw a rectangle } };
Before optimization:
In the above In the implementation, Shape
, Circle
, and Rectangle
have their own vtables. This wastes memory space because Shape
has no virtual functions.
After optimization through virtual base class:
class ShapeBase { public: virtual void draw() = 0; }; class Shape : public ShapeBase { }; class Circle : public Shape { public: void draw() override { // Draw a circle } }; class Rectangle : public Shape { public: void draw() override { // Draw a rectangle } };
Optimization result:
By using virtual base classShapeBase
, Circle
and Rectangle
can now share the same vtable. This eliminates the Shape
vtable, thereby reducing memory overhead.
Conclusion
By using virtual base classes, you can avoid the memory waste caused by the virtual function table in C++. Doing so can improve memory efficiency, especially in applications with a large number of objects.
The above is the detailed content of C++ virtual function table and polymorphic implementation, how to avoid memory waste. For more information, please follow other related articles on the PHP Chinese website!

C still has important relevance in modern programming. 1) High performance and direct hardware operation capabilities make it the first choice in the fields of game development, embedded systems and high-performance computing. 2) Rich programming paradigms and modern features such as smart pointers and template programming enhance its flexibility and efficiency. Although the learning curve is steep, its powerful capabilities make it still important in today's programming ecosystem.

C Learners and developers can get resources and support from StackOverflow, Reddit's r/cpp community, Coursera and edX courses, open source projects on GitHub, professional consulting services, and CppCon. 1. StackOverflow provides answers to technical questions; 2. Reddit's r/cpp community shares the latest news; 3. Coursera and edX provide formal C courses; 4. Open source projects on GitHub such as LLVM and Boost improve skills; 5. Professional consulting services such as JetBrains and Perforce provide technical support; 6. CppCon and other conferences help careers

C# is suitable for projects that require high development efficiency and cross-platform support, while C is suitable for applications that require high performance and underlying control. 1) C# simplifies development, provides garbage collection and rich class libraries, suitable for enterprise-level applications. 2)C allows direct memory operation, suitable for game development and high-performance computing.

C Reasons for continuous use include its high performance, wide application and evolving characteristics. 1) High-efficiency performance: C performs excellently in system programming and high-performance computing by directly manipulating memory and hardware. 2) Widely used: shine in the fields of game development, embedded systems, etc. 3) Continuous evolution: Since its release in 1983, C has continued to add new features to maintain its competitiveness.

The future development trends of C and XML are: 1) C will introduce new features such as modules, concepts and coroutines through the C 20 and C 23 standards to improve programming efficiency and security; 2) XML will continue to occupy an important position in data exchange and configuration files, but will face the challenges of JSON and YAML, and will develop in a more concise and easy-to-parse direction, such as the improvements of XMLSchema1.1 and XPath3.1.

The modern C design model uses new features of C 11 and beyond to help build more flexible and efficient software. 1) Use lambda expressions and std::function to simplify observer pattern. 2) Optimize performance through mobile semantics and perfect forwarding. 3) Intelligent pointers ensure type safety and resource management.

C The core concepts of multithreading and concurrent programming include thread creation and management, synchronization and mutual exclusion, conditional variables, thread pooling, asynchronous programming, common errors and debugging techniques, and performance optimization and best practices. 1) Create threads using the std::thread class. The example shows how to create and wait for the thread to complete. 2) Synchronize and mutual exclusion to use std::mutex and std::lock_guard to protect shared resources and avoid data competition. 3) Condition variables realize communication and synchronization between threads through std::condition_variable. 4) The thread pool example shows how to use the ThreadPool class to process tasks in parallel to improve efficiency. 5) Asynchronous programming uses std::as

C's memory management, pointers and templates are core features. 1. Memory management manually allocates and releases memory through new and deletes, and pay attention to the difference between heap and stack. 2. Pointers allow direct operation of memory addresses, and use them with caution. Smart pointers can simplify management. 3. Template implements generic programming, improves code reusability and flexibility, and needs to understand type derivation and specialization.


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

PhpStorm Mac version
The latest (2018.2.1) professional PHP integrated development tool

Zend Studio 13.0.1
Powerful PHP integrated development environment

SAP NetWeaver Server Adapter for Eclipse
Integrate Eclipse with SAP NetWeaver application server.

SublimeText3 Mac version
God-level code editing software (SublimeText3)

VSCode Windows 64-bit Download
A free and powerful IDE editor launched by Microsoft