Naive Bayes(朴素贝叶斯算法)[分类算法],naivebayes
Naïve Bayes(朴素贝叶斯)分类算法的实现
(1) 简介:
(2) 算法描述:
(3)
<span> 1</span> <?<span>php </span><span> 2</span> <span>/*</span> <span> 3</span> <span>*Naive Bayes朴素贝叶斯算法(分类算法的实现) </span><span> 4</span> <span>*/</span> <span> 5</span> <span> 6</span> <span>/*</span> <span> 7</span> <span>*把.txt中的内容读到数组中保存 </span><span> 8</span> <span>*$filename:文件名称 </span><span> 9</span> <span>*/</span> <span> 10</span> <span>//</span><span>--------------------------------------------------------------------</span> <span> 11</span> <span>function</span> getFileContent(<span>$filename</span><span>) </span><span> 12</span> <span>{ </span><span> 13</span> <span>$array</span> = <span>array</span>(<span>null</span><span>); </span><span> 14</span> <span>$content</span> = <span>file_get_contents</span>(<span>$filename</span><span>); </span><span> 15</span> <span>$result</span> = <span>explode</span>("\r\n",<span>$content</span><span>); </span><span> 16</span> <span>//</span><span>print_r(count($result));</span> <span> 17</span> <span>for</span>(<span>$j</span>=0;<span>$j</span><<span>count</span>(<span>$result</span>);<span>$j</span>++<span>) </span><span> 18</span> <span> { </span><span> 19</span> <span>//</span><span>print_r($result[$j]."<br>");</span> <span> 20</span> <span>$con</span> = <span>explode</span>(" ",<span>$result</span>[<span>$j</span><span>]); </span><span> 21</span> <span>array_push</span>(<span>$array</span>,<span>$con</span><span>); </span><span> 22</span> <span> } </span><span> 23</span> <span>array_splice</span>(<span>$array</span>,0,1<span>); </span><span> 24</span> <span>return</span> <span>$array</span><span>; </span><span> 25</span> <span>} </span><span> 26</span> <span>//</span><span>--------------------------------------------------------------------</span> <span> 27</span> <span> 28</span> <span> 29</span> <span>/*</span> <span> 30</span> <span>*NaiveBayes朴素贝叶斯算法 </span><span> 31</span> <span>*$test:测试文本;$train:训练文本;$flagsyes:yes;$flagsno:no </span><span> 32</span> <span>*/</span> <span> 33</span> <span>//</span><span>--------------------------------------------------------------------</span> <span> 34</span> <span>function</span> NaiveBayes(<span>$test</span>,<span>$train</span>,<span>$flagsyes</span>,<span>$flagsno</span><span>) </span><span> 35</span> <span>{ </span><span> 36</span> <span>$count_yes</span> = 0<span>; </span><span> 37</span> <span>$num</span> = <span>count</span>(<span>$train</span>[0<span>]); </span><span> 38</span> <span>for</span>(<span>$i</span>=1;<span>$i</span><<span>count</span>(<span>$train</span>);<span>$i</span>++<span>) </span><span> 39</span> <span> { </span><span> 40</span> <span>if</span>(<span>$train</span>[<span>$i</span>][<span>$num</span>-1]==<span>$flagsyes</span>)<span>$count_yes</span>++<span>; </span><span> 41</span> <span> } </span><span> 42</span> <span>$p_yes</span> = <span>$count_yes</span> / (<span>count</span>(<span>$train</span>)-1<span>); </span><span> 43</span> <span>$p_no</span> = 1- <span>$p_yes</span><span>; </span><span> 44</span> <span> 45</span> <span>$count_no</span> = <span>count</span>(<span>$train</span>)-1 - <span>$count_yes</span><span>; </span><span> 46</span> <span> 47</span> <span> 48</span> <span>for</span>(<span>$i</span>=1;<span>$i</span><<span>count</span>(<span>$test</span>)-1;<span>$i</span>++<span>) </span><span> 49</span> <span> { </span><span> 50</span> <span>$testnumyes</span> = 0<span>; </span><span> 51</span> <span>$testnumno</span> = 0<span>; </span><span> 52</span> <span>for</span>(<span>$j</span>=1;<span>$j</span><<span>count</span>(<span>$train</span>);<span>$j</span>++<span>) </span><span> 53</span> <span> { </span><span> 54</span> <span>if</span>((<span>$train</span>[<span>$j</span>][<span>$i</span>]==<span>$test</span>[<span>$i</span>])&&(<span>$train</span>[<span>$j</span>][<span>count</span>(<span>$test</span>)-1]==<span>$flagsyes</span>))<span>$testnumyes</span>++<span>; </span><span> 55</span> <span>else</span> <span>if</span>((<span>$train</span>[<span>$j</span>][<span>$i</span>]==<span>$test</span>[<span>$i</span>])&&(<span>$train</span>[<span>$j</span>][<span>count</span>(<span>$test</span>)-1]==<span>$flagsno</span>))<span>$testnumno</span>++<span>; </span><span> 56</span> <span> } </span><span> 57</span> <span> 58</span> <span>$array_yes</span>[<span>$i</span>] = <span>$testnumyes</span> / <span>$count_yes</span><span> ; </span><span> 59</span> <span>$array_no</span>[<span>$i</span>] = <span>$testnumno</span> / <span>$count_no</span><span> ; </span><span> 60</span> <span>/*</span> <span> 61</span> <span> print_r($testnumyes."<br>"); </span><span> 62</span> <span> print_r($testnumno."<br>"); </span><span> 63</span> <span> print_r($count_yes."<br>"); </span><span> 64</span> <span> print_r($count_no."<br>"); </span><span> 65</span> <span> print_r($array_no[$i]."<br>"); </span><span> 66</span> <span>*/</span> <span> 67</span> <span> } </span><span> 68</span> <span> 69</span> <span>$py</span>=1<span>; </span><span> 70</span> <span>$pn</span>=1<span>; </span><span> 71</span> <span>for</span>(<span>$i</span>=1;<span>$i</span><<span>count</span>(<span>$test</span>)-1;<span>$i</span>++<span>){ </span><span> 72</span> <span>$py</span> *= <span>$array_yes</span>[<span>$i</span><span>]; </span><span> 73</span> <span>$pn</span> *= <span>$array_no</span>[<span>$i</span><span>]; </span><span> 74</span> <span> } </span><span> 75</span> <span> 76</span> <span>$py</span> *= <span>$p_yes</span><span>; </span><span> 77</span> <span>$pn</span> *= <span>$p_no</span><span>; </span><span> 78</span> <span> 79</span> <span>if</span>(<span>$py</span>><span>$pn</span>)<span>return</span> <span>$flagsyes</span><span>; </span><span> 80</span> <span>else</span> <span>return</span> <span>$flagsno</span><span>; </span><span> 81</span> <span> 82</span> <span>/*</span><span> print_r($py."<br>"); </span><span> 83</span> <span> print_r($pn."<br>"); </span><span> 84</span> <span>*/</span> <span> 85</span> <span> 86</span> <span>} </span><span> 87</span> <span>//</span><span>--------------------------------------------------------------------</span> <span> 88</span> <span> 89</span> <span>$train</span> = getFileContent("train.txt"<span>); </span><span> 90</span> <span>$test</span> = getFileContent("test.txt"<span>); </span><span> 91</span> <span> 92</span> <span>for</span>(<span>$i</span>=1;<span>$i</span><<span>count</span>(<span>$test</span>);<span>$i</span>++<span>) </span><span> 93</span> <span>{ </span><span> 94</span> <span>$test</span>[<span>$i</span>][<span>count</span>(<span>$test</span>[0])-1] = NaiveBayes(<span>$test</span>[<span>$i</span>],<span>$train</span>,Y,<span>N); </span><span> 95</span> <span>} </span><span> 96</span> <span> 97</span> <span>/*</span> <span> 98</span> <span>*将数组中的内容读到.txt中 </span><span> 99</span> <span>*/</span> <span>100</span> <span>//</span><span>--------------------------------------------------------------------</span> <span>101</span> <span>$fp</span>= <span>fopen</span>('result.txt','wb'<span>); </span><span>102</span> <span>for</span>(<span>$i</span>=0;<span>$i</span><<span>count</span>(<span>$test</span>);<span>$i</span>++<span>) </span><span>103</span> <span>{ </span><span>104</span> <span>$temp</span> = <span>NULL</span><span>; </span><span>105</span> <span>for</span>(<span>$j</span>=0;<span>$j</span><<span>count</span>(<span>$test</span>[<span>$i</span>]);<span>$j</span>++<span>) </span><span>106</span> <span> { </span><span>107</span> <span>$temp</span> = <span>$test</span>[<span>$i</span>][<span>$j</span>]."\t"<span>; </span><span>108</span> <span>fwrite</span>(<span>$fp</span>,<span>$temp</span><span>); </span><span>109</span> <span> } </span><span>110</span> <span>fwrite</span>(<span>$fp</span>,"\r\n"<span>); </span><span>111</span> <span>} </span><span>112</span> <span>fclose</span>(<span>$fp</span><span>); </span><span>113</span> <span>//</span><span>--------------------------------------------------------------------</span> <span>114</span> <span>115</span> <span>/*</span> <span>116</span> <span>*打印输出 </span><span>117</span> <span>*/</span> <span>118</span> <span>//</span><span>--------------------------------------------------------------------</span> <span>119</span> <span>echo</span> "<pre class="brush:php;toolbar:false">"<span>; </span><span>120</span> <span>print_r</span>(<span>$test</span><span>); </span><span>121</span> <span>echo</span> ""; 122 //-------------------------------------------------------------------- 123 ?>

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

MinGW - Minimalist GNU for Windows
This project is in the process of being migrated to osdn.net/projects/mingw, you can continue to follow us there. MinGW: A native Windows port of the GNU Compiler Collection (GCC), freely distributable import libraries and header files for building native Windows applications; includes extensions to the MSVC runtime to support C99 functionality. All MinGW software can run on 64-bit Windows platforms.

SublimeText3 English version
Recommended: Win version, supports code prompts!

SublimeText3 Chinese version
Chinese version, very easy to use

SAP NetWeaver Server Adapter for Eclipse
Integrate Eclipse with SAP NetWeaver application server.

PhpStorm Mac version
The latest (2018.2.1) professional PHP integrated development tool