测试1
deco运行,但myfunc并没有运行
def deco(func):
print 'before func'
return func
def myfunc():
print 'myfunc() called'
myfunc = deco(myfunc)
测试2
需要的deco中调用myfunc,这样才可以执行
def deco(func):
print 'before func'
func()
print 'after func'
return func
def myfunc():
print 'myfunc() called'
myfunc = deco(myfunc)
测试3
@函数名 但是它执行了两次
def deco(func):
print 'before func'
func()
print 'after func'
return func
@deco
def myfunc():
print 'myfunc() called'
myfunc()
测试4
这样装饰才行
def deco(func):
def _deco():
print 'before func'
func()
print 'after func'
return _deco
@deco
def myfunc():
print 'myfunc() called'
myfunc()
测试5
@带参数,使用嵌套的方法
def deco(arg):
def _deco(func):
print arg
def __deco():
print 'before func'
func()
print 'after func'
return __deco
return _deco
@deco('deco')
def myfunc():
print 'myfunc() called'
myfunc()
测试6
函数参数传递
def deco(arg):
def _deco(func):
print arg
def __deco(str):
print 'before func'
func(str)
print 'after func'
return __deco
return _deco
@deco('deco')
def myfunc(str):
print 'myfunc() called ', str
myfunc('hello')
测试7
未知参数个数
def deco(arg):
def _deco(func):
print arg
def __deco(*args, **kwargs):
print 'before func'
func(*args, **kwargs)
print 'after func'
return __deco
return _deco
@deco('deco1')
def myfunc1(str):
print 'myfunc1() called ', str
@deco('deco2')
def myfunc2(str1,str2):
print 'myfunc2() called ', str1, str2
myfunc1('hello')
myfunc2('hello', 'world')
测试8
class作为修饰器
class myDecorator(object):
def __init__(self, fn):
print "inside myDecorator.__init__()"
self.fn = fn
def __call__(self):
self.fn()
print "inside myDecorator.__call__()"
@myDecorator
def aFunction():
print "inside aFunction()"
print "Finished decorating aFunction()"
aFunction()
测试9
class myDecorator(object):
def __init__(self, str):
print "inside myDecorator.__init__()"
self.str = str
print self.str
def __call__(self, fn):
def wrapped(*args, **kwargs):
fn()
print "inside myDecorator.__call__()"
return wrapped
@myDecorator('this is str')
def aFunction():
print "inside aFunction()"
print "Finished decorating aFunction()"
aFunction()
实例
给函数做缓存 --- 斐波拉契数列
from functools import wraps
def memo(fn):
cache = {}
miss = object()
@wraps(fn)
def wrapper(*args):
result = cache.get(args, miss)
if result is miss:
result = fn(*args)
cache[args] = result
return result
return wrapper
@memo
def fib(n):
if n return n
return fib(n - 1) + fib(n - 2)
print fib(10)
注册回调函数 --- web请求回调
class MyApp():
def __init__(self):
self.func_map = {}
def register(self, name):
def func_wrapper(func):
self.func_map[name] = func
return func
return func_wrapper
def call_method(self, name=None):
func = self.func_map.get(name, None)
if func is None:
raise Exception("No function registered against - " + str(name))
return func()
app = MyApp()
@app.register('/')
def main_page_func():
return "This is the main page."
@app.register('/next_page')
def next_page_func():
return "This is the next page."
print app.call_method('/')
print app.call_method('/next_page')
mysql封装 -- 很好用
import umysql
from functools import wraps
class Configuraion:
def __init__(self, env):
if env == "Prod":
self.host = "coolshell.cn"
self.port = 3306
self.db = "coolshell"
self.user = "coolshell"
self.passwd = "fuckgfw"
elif env == "Test":
self.host = 'localhost'
self.port = 3300
self.user = 'coolshell'
self.db = 'coolshell'
self.passwd = 'fuckgfw'
def mysql(sql):
_conf = Configuraion(env="Prod")
def on_sql_error(err):
print err
sys.exit(-1)
def handle_sql_result(rs):
if rs.rows > 0:
fieldnames = [f[0] for f in rs.fields]
return [dict(zip(fieldnames, r)) for r in rs.rows]
else:
return []
def decorator(fn):
@wraps(fn)
def wrapper(*args, **kwargs):
mysqlconn = umysql.Connection()
mysqlconn.settimeout(5)
mysqlconn.connect(_conf.host, _conf.port, _conf.user, \
_conf.passwd, _conf.db, True, 'utf8')
try:
rs = mysqlconn.query(sql, {})
except umysql.Error as e:
on_sql_error(e)
data = handle_sql_result(rs)
kwargs["data"] = data
result = fn(*args, **kwargs)
mysqlconn.close()
return result
return wrapper
return decorator
@mysql(sql = "select * from coolshell" )
def get_coolshell(data):
... ...
... ..
线程异步
from threading import Thread
from functools import wraps
def async(func):
@wraps(func)
def async_func(*args, **kwargs):
func_hl = Thread(target = func, args = args, kwargs = kwargs)
func_hl.start()
return func_hl
return async_func
if __name__ == '__main__':
from time import sleep
@async
def print_somedata():
print 'starting print_somedata'
sleep(2)
print 'print_somedata: 2 sec passed'
sleep(2)
print 'print_somedata: 2 sec passed'
sleep(2)
print 'finished print_somedata'
def main():
print_somedata()
print 'back in main'
print_somedata()
print 'back in main'
main()

本篇文章给大家带来了关于Python的相关知识,其中主要介绍了关于Seaborn的相关问题,包括了数据可视化处理的散点图、折线图、条形图等等内容,下面一起来看一下,希望对大家有帮助。

本篇文章给大家带来了关于Python的相关知识,其中主要介绍了关于进程池与进程锁的相关问题,包括进程池的创建模块,进程池函数等等内容,下面一起来看一下,希望对大家有帮助。

本篇文章给大家带来了关于Python的相关知识,其中主要介绍了关于简历筛选的相关问题,包括了定义 ReadDoc 类用以读取 word 文件以及定义 search_word 函数用以筛选的相关内容,下面一起来看一下,希望对大家有帮助。

VS Code的确是一款非常热门、有强大用户基础的一款开发工具。本文给大家介绍一下10款高效、好用的插件,能够让原本单薄的VS Code如虎添翼,开发效率顿时提升到一个新的阶段。

本篇文章给大家带来了关于Python的相关知识,其中主要介绍了关于数据类型之字符串、数字的相关问题,下面一起来看一下,希望对大家有帮助。

本篇文章给大家带来了关于Python的相关知识,其中主要介绍了关于numpy模块的相关问题,Numpy是Numerical Python extensions的缩写,字面意思是Python数值计算扩展,下面一起来看一下,希望对大家有帮助。

pythn的中文意思是巨蟒、蟒蛇。1989年圣诞节期间,Guido van Rossum在家闲的没事干,为了跟朋友庆祝圣诞节,决定发明一种全新的脚本语言。他很喜欢一个肥皂剧叫Monty Python,所以便把这门语言叫做python。


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

Atom editor mac version download
The most popular open source editor

MantisBT
Mantis is an easy-to-deploy web-based defect tracking tool designed to aid in product defect tracking. It requires PHP, MySQL and a web server. Check out our demo and hosting services.

Dreamweaver Mac version
Visual web development tools

PhpStorm Mac version
The latest (2018.2.1) professional PHP integrated development tool

Safe Exam Browser
Safe Exam Browser is a secure browser environment for taking online exams securely. This software turns any computer into a secure workstation. It controls access to any utility and prevents students from using unauthorized resources.
