测试1
deco运行,但myfunc并没有运行
def deco(func):
print 'before func'
return func
def myfunc():
print 'myfunc() called'
myfunc = deco(myfunc)
测试2
需要的deco中调用myfunc,这样才可以执行
def deco(func):
print 'before func'
func()
print 'after func'
return func
def myfunc():
print 'myfunc() called'
myfunc = deco(myfunc)
测试3
@函数名 但是它执行了两次
def deco(func):
print 'before func'
func()
print 'after func'
return func
@deco
def myfunc():
print 'myfunc() called'
myfunc()
测试4
这样装饰才行
def deco(func):
def _deco():
print 'before func'
func()
print 'after func'
return _deco
@deco
def myfunc():
print 'myfunc() called'
myfunc()
测试5
@带参数,使用嵌套的方法
def deco(arg):
def _deco(func):
print arg
def __deco():
print 'before func'
func()
print 'after func'
return __deco
return _deco
@deco('deco')
def myfunc():
print 'myfunc() called'
myfunc()
测试6
函数参数传递
def deco(arg):
def _deco(func):
print arg
def __deco(str):
print 'before func'
func(str)
print 'after func'
return __deco
return _deco
@deco('deco')
def myfunc(str):
print 'myfunc() called ', str
myfunc('hello')
测试7
未知参数个数
def deco(arg):
def _deco(func):
print arg
def __deco(*args, **kwargs):
print 'before func'
func(*args, **kwargs)
print 'after func'
return __deco
return _deco
@deco('deco1')
def myfunc1(str):
print 'myfunc1() called ', str
@deco('deco2')
def myfunc2(str1,str2):
print 'myfunc2() called ', str1, str2
myfunc1('hello')
myfunc2('hello', 'world')
测试8
class作为修饰器
class myDecorator(object):
def __init__(self, fn):
print "inside myDecorator.__init__()"
self.fn = fn
def __call__(self):
self.fn()
print "inside myDecorator.__call__()"
@myDecorator
def aFunction():
print "inside aFunction()"
print "Finished decorating aFunction()"
aFunction()
测试9
class myDecorator(object):
def __init__(self, str):
print "inside myDecorator.__init__()"
self.str = str
print self.str
def __call__(self, fn):
def wrapped(*args, **kwargs):
fn()
print "inside myDecorator.__call__()"
return wrapped
@myDecorator('this is str')
def aFunction():
print "inside aFunction()"
print "Finished decorating aFunction()"
aFunction()
实例
给函数做缓存 --- 斐波拉契数列
from functools import wraps
def memo(fn):
cache = {}
miss = object()
@wraps(fn)
def wrapper(*args):
result = cache.get(args, miss)
if result is miss:
result = fn(*args)
cache[args] = result
return result
return wrapper
@memo
def fib(n):
if n return n
return fib(n - 1) + fib(n - 2)
print fib(10)
注册回调函数 --- web请求回调
class MyApp():
def __init__(self):
self.func_map = {}
def register(self, name):
def func_wrapper(func):
self.func_map[name] = func
return func
return func_wrapper
def call_method(self, name=None):
func = self.func_map.get(name, None)
if func is None:
raise Exception("No function registered against - " + str(name))
return func()
app = MyApp()
@app.register('/')
def main_page_func():
return "This is the main page."
@app.register('/next_page')
def next_page_func():
return "This is the next page."
print app.call_method('/')
print app.call_method('/next_page')
mysql封装 -- 很好用
import umysql
from functools import wraps
class Configuraion:
def __init__(self, env):
if env == "Prod":
self.host = "coolshell.cn"
self.port = 3306
self.db = "coolshell"
self.user = "coolshell"
self.passwd = "fuckgfw"
elif env == "Test":
self.host = 'localhost'
self.port = 3300
self.user = 'coolshell'
self.db = 'coolshell'
self.passwd = 'fuckgfw'
def mysql(sql):
_conf = Configuraion(env="Prod")
def on_sql_error(err):
print err
sys.exit(-1)
def handle_sql_result(rs):
if rs.rows > 0:
fieldnames = [f[0] for f in rs.fields]
return [dict(zip(fieldnames, r)) for r in rs.rows]
else:
return []
def decorator(fn):
@wraps(fn)
def wrapper(*args, **kwargs):
mysqlconn = umysql.Connection()
mysqlconn.settimeout(5)
mysqlconn.connect(_conf.host, _conf.port, _conf.user, \
_conf.passwd, _conf.db, True, 'utf8')
try:
rs = mysqlconn.query(sql, {})
except umysql.Error as e:
on_sql_error(e)
data = handle_sql_result(rs)
kwargs["data"] = data
result = fn(*args, **kwargs)
mysqlconn.close()
return result
return wrapper
return decorator
@mysql(sql = "select * from coolshell" )
def get_coolshell(data):
... ...
... ..
线程异步
from threading import Thread
from functools import wraps
def async(func):
@wraps(func)
def async_func(*args, **kwargs):
func_hl = Thread(target = func, args = args, kwargs = kwargs)
func_hl.start()
return func_hl
return async_func
if __name__ == '__main__':
from time import sleep
@async
def print_somedata():
print 'starting print_somedata'
sleep(2)
print 'print_somedata: 2 sec passed'
sleep(2)
print 'print_somedata: 2 sec passed'
sleep(2)
print 'finished print_somedata'
def main():
print_somedata()
print 'back in main'
print_somedata()
print 'back in main'
main()

There are many methods to connect two lists in Python: 1. Use operators, which are simple but inefficient in large lists; 2. Use extend method, which is efficient but will modify the original list; 3. Use the = operator, which is both efficient and readable; 4. Use itertools.chain function, which is memory efficient but requires additional import; 5. Use list parsing, which is elegant but may be too complex. The selection method should be based on the code context and requirements.

There are many ways to merge Python lists: 1. Use operators, which are simple but not memory efficient for large lists; 2. Use extend method, which is efficient but will modify the original list; 3. Use itertools.chain, which is suitable for large data sets; 4. Use * operator, merge small to medium-sized lists in one line of code; 5. Use numpy.concatenate, which is suitable for large data sets and scenarios with high performance requirements; 6. Use append method, which is suitable for small lists but is inefficient. When selecting a method, you need to consider the list size and application scenarios.

Compiledlanguagesofferspeedandsecurity,whileinterpretedlanguagesprovideeaseofuseandportability.1)CompiledlanguageslikeC arefasterandsecurebuthavelongerdevelopmentcyclesandplatformdependency.2)InterpretedlanguageslikePythonareeasiertouseandmoreportab

In Python, a for loop is used to traverse iterable objects, and a while loop is used to perform operations repeatedly when the condition is satisfied. 1) For loop example: traverse the list and print the elements. 2) While loop example: guess the number game until you guess it right. Mastering cycle principles and optimization techniques can improve code efficiency and reliability.

To concatenate a list into a string, using the join() method in Python is the best choice. 1) Use the join() method to concatenate the list elements into a string, such as ''.join(my_list). 2) For a list containing numbers, convert map(str, numbers) into a string before concatenating. 3) You can use generator expressions for complex formatting, such as ','.join(f'({fruit})'forfruitinfruits). 4) When processing mixed data types, use map(str, mixed_list) to ensure that all elements can be converted into strings. 5) For large lists, use ''.join(large_li

Pythonusesahybridapproach,combiningcompilationtobytecodeandinterpretation.1)Codeiscompiledtoplatform-independentbytecode.2)BytecodeisinterpretedbythePythonVirtualMachine,enhancingefficiencyandportability.

ThekeydifferencesbetweenPython's"for"and"while"loopsare:1)"For"loopsareidealforiteratingoversequencesorknowniterations,while2)"while"loopsarebetterforcontinuinguntilaconditionismetwithoutpredefinediterations.Un

In Python, you can connect lists and manage duplicate elements through a variety of methods: 1) Use operators or extend() to retain all duplicate elements; 2) Convert to sets and then return to lists to remove all duplicate elements, but the original order will be lost; 3) Use loops or list comprehensions to combine sets to remove duplicate elements and maintain the original order.


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

DVWA
Damn Vulnerable Web App (DVWA) is a PHP/MySQL web application that is very vulnerable. Its main goals are to be an aid for security professionals to test their skills and tools in a legal environment, to help web developers better understand the process of securing web applications, and to help teachers/students teach/learn in a classroom environment Web application security. The goal of DVWA is to practice some of the most common web vulnerabilities through a simple and straightforward interface, with varying degrees of difficulty. Please note that this software

SublimeText3 English version
Recommended: Win version, supports code prompts!

Atom editor mac version download
The most popular open source editor

Notepad++7.3.1
Easy-to-use and free code editor

Safe Exam Browser
Safe Exam Browser is a secure browser environment for taking online exams securely. This software turns any computer into a secure workstation. It controls access to any utility and prevents students from using unauthorized resources.
