search
HomeBackend DevelopmentPython Tutorial在Debian下配置Python+Django+Nginx+uWSGI+MySQL的教程

最近尝试把项目迁移到Python环境下,特别新装了一台干净的Debian系统,准备重新配置环境,上网找了一些运行Python Web的环境方案,最后敲定Nginx+uWSGI组合,Nginx用得比较多,熟练些;uWSGI据说性能不错,想尝试一下。

网上大部分教程都是要求到uWSGI官方网站下载源码包,然后通过编译的方式安装,比如对于一台新Debian系统,可以通过下面的命令安装:

apt-get update
apt-get upgrade
apt-get install build-essential psmisc
apt-get install python-dev libxml2 libxml2-dev
apt-get install python-setuptools
cd /opt/
wget http://projects.unbit.it/downloads/uwsgi-latest.tar.gz
tar -zxvf uwsgi-latest.tar.gz
mv uwsgi-latest/ uwsgi/
cd uwsgi/
python setup.py install

还有一些配置我就不介绍了,大家可以参考Linode Library的《Deploy Python Code with WSGI using uWSGI and nginx on Debian 6 (Squeeze)》介绍。

今天要介绍的是利用APT源直接apt-get install安装配置我们所需要的环境,首先按惯例先安装MySQL和Nginx:

然后通过Debian Packages网站找到我们所需要的uWSGI在sid里,sid版里的东西表示仍在开发测试中,不是最终稳定版,不过对于我们测试来说是够用了,为了用sid里面的软件包,我们还需要修改我们的/etc/apt/sources.list源,添加deb http://ftp.tw.debian.org/debian sid main non-free contrib这一行,或者直接输入命令:

echo "deb http://ftp.tw.debian.org/debian sid main non-free contrib" >> /etc/apt/sources.list

配置过源列表后,我们就可以通过下面的命令安装了:

apt-get update
apt-get install uwsgi uwsgi-core uwsgi-plugin-python

安装完成后,配置文件按惯例放在了/etc/uwsgi里面,服务控制可以通过invoke-rc.d uwsgi后面跟命令参数来实现,不过这里有个小插曲我不得不提一下,安装时可能会报这样的错误:

The following packages have unmet dependencies: 
libc6-dev : Breaks: gcc-4.4 (< 4.4.6-4) but 4.4.5-8 is to be installed. 
E: Broken packages

看样子是依赖包gcc版本不匹配,我后来通过下面的方式解决了:

apt-get update
apt-get upgrade # 先尝试升级系统软件包
 
apt-get install libc6-dev

接下来就是安装django以及Python的MySQL支持,继续APT命令:

apt-get install python-django python-mysqldb

通过上面的步骤,Python环境应该安装到你的系统里了,切换到/usr/lib:

cd /usr/lib
ls -l | grep python

你可能会发现系统内被默认安装了几个版本的Python,比如我这里就安装有3个版本:

/usr/lib/python2.6
/usr/lib/python2.7
/usr/lib/python3

如何确定当前的Python默认版本呢?很容易,直接通过下面的命令就可以了:

python --version

大家知道django是安装到python目录下的site-packages下的,但是这几个python目录下都没有site-packages这个文件夹,其实我们可以先通过下面的命令定位一下:

python -c "from distutils.sysconfig import get_python_lib; print get_python_lib()"

上面的命令会在控制台上打印Python包路径,比如这里我们可能获得dist-packages这个目录,切换到这个目录你就会发现django在那儿啦。给django-admin.py加上权限,再做个符号连接,便于我们以后操作(我这里Django在Python2.7下):

chmod 777 /usr/lib/python2.7/dist-packages/django/bin/django-admin.py
ln -s /usr/lib/python2.7/dist-packages/django/bin/django-admin.py /usr/local/bin

记下Django所在的Python版本,然后通过下面的命令切换uwsgi的默认Python版本(一般不需要切换):

update-alternatives --config uwsgi-plugin-python

好啦,到这里基本上安装部分就介绍完了,下面讲解配置部分,首先建立我们项目的文件夹,比如说放在/home/user/www下,然后通过下面的命令创建名为mysite的Django项目:

cd /home/user/www
django-admin.py startproject mysite

好了,这下/home/user/www目录下应该有个子文件夹名字叫mysite,我们需要丢个wsgi的配置文件到/home/user/www/mysite/里面去,配置文件命名为wsgi.py,内容如下:

接下来是修改uwsgi配置文件,先通过如下命令按照刚才的设置建立个配置文件:

cat > /etc/uwsgi/apps-enabled/www.ini << EOF
[uwsgi]
socket = /var/run/uwsgi/app/www/socket
chmod-socket = 666
limit-as = 256
processes = 6
max-request = 2000
memory-report = true
enable-threads = true
pythonpath = /home/user/www
chdir = /home/user/www/mysite
wsgi-file = /home/user/www/mysite/wsgi.py
EOF
 
# 重启uwsgi
invoke-rc.d uwsgi restart

注意上面的socket配置,这个在我机子上是这个路径,大家可以cd /var/run里面找下,然后配置正确,接下来建立Nginx配置文件:

cat > /etc/nginx/sites-enabled/www << EOF
server {
    listen  80;
    server_name localhost;
    location / {
        include uwsgi_params;
        uwsgi_pass unix:///var/run/uwsgi/app/www/socket;
    }
}
EOF

这里的uwsgi_pass依旧是上面我们找到的socket,注意一下server_name,这个是我们绑定的域名,通过nginx -s reload重新加载nginx。

好了,现在可以访问看看是不是成功了?如果出现502 Bad Gateway,可以检查一下uwsgi是否正常启动,通过ps aux | grep uwsgi看下进程列表,最后在检查下socket路径是否正确。

假如出现uWSGI Error:Python application not found这个问题,主要是路径配置问题,这点你可以查阅/var/log/uwsgi下面的日志文件,比如我就遇到过ImportError: No module named django.core.handlers.wsgi这个问题,实际上是wsgi.py里面路径配置不正确。

Statement
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn
Python vs. C  : Learning Curves and Ease of UsePython vs. C : Learning Curves and Ease of UseApr 19, 2025 am 12:20 AM

Python is easier to learn and use, while C is more powerful but complex. 1. Python syntax is concise and suitable for beginners. Dynamic typing and automatic memory management make it easy to use, but may cause runtime errors. 2.C provides low-level control and advanced features, suitable for high-performance applications, but has a high learning threshold and requires manual memory and type safety management.

Python vs. C  : Memory Management and ControlPython vs. C : Memory Management and ControlApr 19, 2025 am 12:17 AM

Python and C have significant differences in memory management and control. 1. Python uses automatic memory management, based on reference counting and garbage collection, simplifying the work of programmers. 2.C requires manual management of memory, providing more control but increasing complexity and error risk. Which language to choose should be based on project requirements and team technology stack.

Python for Scientific Computing: A Detailed LookPython for Scientific Computing: A Detailed LookApr 19, 2025 am 12:15 AM

Python's applications in scientific computing include data analysis, machine learning, numerical simulation and visualization. 1.Numpy provides efficient multi-dimensional arrays and mathematical functions. 2. SciPy extends Numpy functionality and provides optimization and linear algebra tools. 3. Pandas is used for data processing and analysis. 4.Matplotlib is used to generate various graphs and visual results.

Python and C  : Finding the Right ToolPython and C : Finding the Right ToolApr 19, 2025 am 12:04 AM

Whether to choose Python or C depends on project requirements: 1) Python is suitable for rapid development, data science, and scripting because of its concise syntax and rich libraries; 2) C is suitable for scenarios that require high performance and underlying control, such as system programming and game development, because of its compilation and manual memory management.

Python for Data Science and Machine LearningPython for Data Science and Machine LearningApr 19, 2025 am 12:02 AM

Python is widely used in data science and machine learning, mainly relying on its simplicity and a powerful library ecosystem. 1) Pandas is used for data processing and analysis, 2) Numpy provides efficient numerical calculations, and 3) Scikit-learn is used for machine learning model construction and optimization, these libraries make Python an ideal tool for data science and machine learning.

Learning Python: Is 2 Hours of Daily Study Sufficient?Learning Python: Is 2 Hours of Daily Study Sufficient?Apr 18, 2025 am 12:22 AM

Is it enough to learn Python for two hours a day? It depends on your goals and learning methods. 1) Develop a clear learning plan, 2) Select appropriate learning resources and methods, 3) Practice and review and consolidate hands-on practice and review and consolidate, and you can gradually master the basic knowledge and advanced functions of Python during this period.

Python for Web Development: Key ApplicationsPython for Web Development: Key ApplicationsApr 18, 2025 am 12:20 AM

Key applications of Python in web development include the use of Django and Flask frameworks, API development, data analysis and visualization, machine learning and AI, and performance optimization. 1. Django and Flask framework: Django is suitable for rapid development of complex applications, and Flask is suitable for small or highly customized projects. 2. API development: Use Flask or DjangoRESTFramework to build RESTfulAPI. 3. Data analysis and visualization: Use Python to process data and display it through the web interface. 4. Machine Learning and AI: Python is used to build intelligent web applications. 5. Performance optimization: optimized through asynchronous programming, caching and code

Python vs. C  : Exploring Performance and EfficiencyPython vs. C : Exploring Performance and EfficiencyApr 18, 2025 am 12:20 AM

Python is better than C in development efficiency, but C is higher in execution performance. 1. Python's concise syntax and rich libraries improve development efficiency. 2.C's compilation-type characteristics and hardware control improve execution performance. When making a choice, you need to weigh the development speed and execution efficiency based on project needs.

See all articles

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

Video Face Swap

Video Face Swap

Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Tools

Atom editor mac version download

Atom editor mac version download

The most popular open source editor

SublimeText3 Linux new version

SublimeText3 Linux new version

SublimeText3 Linux latest version

SublimeText3 Mac version

SublimeText3 Mac version

God-level code editing software (SublimeText3)

SublimeText3 English version

SublimeText3 English version

Recommended: Win version, supports code prompts!

SAP NetWeaver Server Adapter for Eclipse

SAP NetWeaver Server Adapter for Eclipse

Integrate Eclipse with SAP NetWeaver application server.