XML.DOM
需求
有一个表,里面数据量比较大,每天一更新,其字段可以通过xml配置文件进行配置,即,可能每次建表的字段不一样。
上游跑时会根据配置从源文件中提取,到入库这一步需要根据配置进行建表。
解决
写了一个简单的xml,配置需要字段及类型
上游读取到对应的数据
入库这一步,先把原表删除,根据配置建新表
XML文件
<?xml version="1.0" encoding="UTF-8"?> <!-- 表名 ,数据库名 可灵活配置插入哪个库哪个表 --> <table name="top_query" db_name="evaluting_sys"> <!-- 非业务主键,自增长,可配名,其他 INTEGER UNSIGNED AUTO_INCREMENT --> <primary_key> <name>id</name> </primary_key> <!-- 字段开始 --> <field> <name>query</name> <type>varchar(200)</type> <is_index>false</is_index> <description>query</description> </field> <field> <name>pv</name> <type>integer</type> <is_index>false</is_index> <description>pv</description> </field> <field> <name>avg_money</name> <type>integer</type> <is_index>false</is_index> <description></description> </field> <!-- 字段配置结束 --> </table>
处理脚本
#!/usr/bin/python # -*- coding:utf-8 -*- #author: wklken #desc: use to read db xml config. #----------------------- #2012-02-18 created #---------------------- import sys,os from xml.dom import minidom, Node def read_dbconfig_xml(xml_file_path): content = {} root = minidom.parse(xml_file_path) table = root.getElementsByTagName("table")[0] #read dbname and table name. table_name = table.getAttribute("name") db_name = table.getAttribute("db_name") if len(table_name) > 0 and len(db_name) > 0: db_sql = "create database if not exists `" + db_name +"`; use " + db_name + ";" table_drop_sql = "drop " + table_name + " if exists " + table_name + ";" content.update({"db_sql" : db_sql}) content.update({"table_sql" : table_drop_sql }) else: print "Error:attribute is not define well! db_name=" + db_name + " ;table_name=" + table_name sys.exit(1) #print table_name, db_name table_create_sql = "create table " + table_name +"(" #read primary cell primary_key = table.getElementsByTagName("primary_key")[0] primary_key_name = primary_key.getElementsByTagName("name")[0].childNodes[0].nodeValue table_create_sql += primary_key_name + " INTEGER NOT NULL AUTO_INCREMENT PRIMARY KEY," #print primary_key.toxml() #read ordernary field fields = table.getElementsByTagName("field") f_index = 0 for field in fields: f_index += 1 name = field.getElementsByTagName("name")[0].childNodes[0].nodeValue type = field.getElementsByTagName("type")[0].childNodes[0].nodeValue table_create_sql += name + " " + type if f_index != len(fields): table_create_sql += "," is_index = field.getElementsByTagName("is_index")[0].childNodes[0].nodeValue table_create_sql += ");" content.update({"table_create_sql" : table_create_sql}) #character set latin1 collate latin1_danish_ci; print content if __name__ == "__main__": read_dbconfig_xml(sys.argv[1])
涉及方法
root = minidom.parse(xml_file_path) 获取dom对象
root.getElementsByTagName("table") 根据tag获取节点列表
table.getAttribute("name") 获取属性
primary_key.getElementsByTagName("name")[0].childNodes[0].nodeValue 获取子节点的值(id 得到id)
SAX
需求
读取xml数据文件,文件较大,需要实时处理插入到数据库
xml文档
<PERSONS> <person> <id>100000</id> <sex>男</sex> <address>北京,海淀区</address> <fansNum>437</fansNum> <summary>1989</summary> <wbNum>333</wbNum> <gzNum>242</gzNum> <blog>null</blog> <edu>大学</edu> <work></work> <renZh>1</renZh> <brithday>2月14日</brithday> </person> </PERSONS>
处理
sax处理时并不会像dom一样可以以类似节点的维度进行读取,它只有 开始标签 内容 结束标签 之分
处理思想是:通过一个handler,对开始标签,内容,结束标签各有一个处理函数
代码及注解
person 处理类
from xml.sax import handler,parseString class PersonHandler(handler.ContentHandler): def __init__(self, db_ops): #db op obj self.db_ops = db_ops #存储一个person的map self.person = {} #当前的tag self.current_tag = "" #是否是tag之间的内容 ,目的拿到tag间内容,不受空白的干扰 self.in_quote = 0 #开始,清空map def startElement(self, name, attr): #以person,清空map if name == "person": self.person = {} #记录 状态 self.current_tag = name self.in_quote = 1 #结束,插入数据库 def endElement(self, name): #以person结尾 代表读取一个person的信息结束 if name == "person": #do something in_fields = tuple([ ('"' + self.person.get(i,"") + '"') for i in fields ]) print in_sql % in_fields db_ops.insert( in_sql%(in_fields)) #处理 self.in_quote = 0 def characters(self, content): #若是在tag之间的内容,更新到map中 if self.in_quote: self.person.update({self.current_tag: content})
加上入库的完整代码
#!/usr/bin/python # -*- coding:utf-8 -*- #parse_person.py #version : 0.1 #author : wukunliang@163.com #desc : parse person.xml and out sql import sys,os import MySQLdb reload(sys) sys.setdefaultencoding('utf-8') in_sql = "insert into person(id,sex,address,fansNum,summary,wbNum,gzNum,blog,edu,work,renZh,brithday) values(%s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s)" fields = ("id","sex","address","fansNum","summary","wbNum","gzNum","blog","edu","work","renZh","brithday") #数据库方法 class Db_Connect: def __init__(self, db_host, user, pwd, db_name, charset="utf8", use_unicode = True): print "init begin" print db_host, user, pwd, db_name, charset , use_unicode self.conn = MySQLdb.Connection(db_host, user, pwd, db_name, charset=charset , use_unicode=use_unicode) print "init end" def insert(self, sql): try: n = self.conn.cursor().execute(sql) return n except MySQLdb.Warning, e: print "Error: execute sql '",sql,"' failed" def close(self): self.conn.close() #person 处理类 from xml.sax import handler,parseString class PersonHandler(handler.ContentHandler): def __init__(self, db_ops): #db op obj self.db_ops = db_ops #存储一个person的map self.person = {} #当前的tag self.current_tag = "" #是否是tag之间的内容 self.in_quote = 0 #开始,清空map def startElement(self, name, attr): #以person,清空map if name == "person": self.person = {} #记录 状态 self.current_tag = name self.in_quote = 1 #结束,插入数据库 def endElement(self, name): #以person结尾 代表读取一个person的信息结束 if name == "person": #do something in_fields = tuple([ ('"' + self.person.get(i,"") + '"') for i in fields ]) print in_sql % in_fields db_ops.insert( in_sql%(in_fields)) #处理 self.in_quote = 0 def characters(self, content): #若是在tag之间的内容,更新到map中 if self.in_quote: self.person.update({self.current_tag: content}) if __name__ == "__main__": f = open("./person.xml") #如果源文件gbk 转码 若是utf-8,去掉decode.encode db_ops = Db_Connect("127.0.0.1", "root", "root", "test") parseString(f.read().decode("gbk").encode("utf-8"), PersonHandler(db_ops)) f.close() db_ops.close()
平时拿python来分析数据,工具脚本还有hadoop streamming,但是用的面和深度实在欠缺 只能说道行还浅,需要多多实践

Python is easier to learn and use, while C is more powerful but complex. 1. Python syntax is concise and suitable for beginners. Dynamic typing and automatic memory management make it easy to use, but may cause runtime errors. 2.C provides low-level control and advanced features, suitable for high-performance applications, but has a high learning threshold and requires manual memory and type safety management.

Python and C have significant differences in memory management and control. 1. Python uses automatic memory management, based on reference counting and garbage collection, simplifying the work of programmers. 2.C requires manual management of memory, providing more control but increasing complexity and error risk. Which language to choose should be based on project requirements and team technology stack.

Python's applications in scientific computing include data analysis, machine learning, numerical simulation and visualization. 1.Numpy provides efficient multi-dimensional arrays and mathematical functions. 2. SciPy extends Numpy functionality and provides optimization and linear algebra tools. 3. Pandas is used for data processing and analysis. 4.Matplotlib is used to generate various graphs and visual results.

Whether to choose Python or C depends on project requirements: 1) Python is suitable for rapid development, data science, and scripting because of its concise syntax and rich libraries; 2) C is suitable for scenarios that require high performance and underlying control, such as system programming and game development, because of its compilation and manual memory management.

Python is widely used in data science and machine learning, mainly relying on its simplicity and a powerful library ecosystem. 1) Pandas is used for data processing and analysis, 2) Numpy provides efficient numerical calculations, and 3) Scikit-learn is used for machine learning model construction and optimization, these libraries make Python an ideal tool for data science and machine learning.

Is it enough to learn Python for two hours a day? It depends on your goals and learning methods. 1) Develop a clear learning plan, 2) Select appropriate learning resources and methods, 3) Practice and review and consolidate hands-on practice and review and consolidate, and you can gradually master the basic knowledge and advanced functions of Python during this period.

Key applications of Python in web development include the use of Django and Flask frameworks, API development, data analysis and visualization, machine learning and AI, and performance optimization. 1. Django and Flask framework: Django is suitable for rapid development of complex applications, and Flask is suitable for small or highly customized projects. 2. API development: Use Flask or DjangoRESTFramework to build RESTfulAPI. 3. Data analysis and visualization: Use Python to process data and display it through the web interface. 4. Machine Learning and AI: Python is used to build intelligent web applications. 5. Performance optimization: optimized through asynchronous programming, caching and code

Python is better than C in development efficiency, but C is higher in execution performance. 1. Python's concise syntax and rich libraries improve development efficiency. 2.C's compilation-type characteristics and hardware control improve execution performance. When making a choice, you need to weigh the development speed and execution efficiency based on project needs.


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

SublimeText3 Linux new version
SublimeText3 Linux latest version

SublimeText3 Mac version
God-level code editing software (SublimeText3)

MantisBT
Mantis is an easy-to-deploy web-based defect tracking tool designed to aid in product defect tracking. It requires PHP, MySQL and a web server. Check out our demo and hosting services.

VSCode Windows 64-bit Download
A free and powerful IDE editor launched by Microsoft

EditPlus Chinese cracked version
Small size, syntax highlighting, does not support code prompt function