search
HomeBackend DevelopmentPython Tutorialpython Django模板的使用方法

模板是一个文本,用于分离文档的表现形式和内容。 模板定义了占位符以及各种用于规范文档该如何显示的各部分基本逻辑(模板标签)。 模板通常用于产生HTML,但是Django的模板也能产生任何基于文本格式的文档。
来一个项目说明
1、建立MyDjangoSite项目具体不多说,参考前面。
2、在MyDjangoSite(包含四个文件的)文件夹目录下新建templates文件夹存放模版。
3、在刚建立的模版下建模版文件user_info.html

<html>
  <meta http-equiv="Content-type" content="text/html; charset=utf-8">
  <title>用户信息</title>
  <head></head>
  <body>
    <h3 id="用户信息">用户信息:</h3>
    <p>姓名:{{name}}</p>
    <p>年龄:{{age}}</p>
  </body>
</html>

说明:{{ name }}叫做模版变量;{% if xx %} ,{% for x in list %}模版标签。

4、修改settings.py 中的TEMPLATE_DIRS
导入import os.path
添加 os.path.join(os.path.dirname(__file__), ‘templates').replace(‘\\','/'),

TEMPLATE_DIRS = (
  # Put strings here, like "/home/html/django_templates" or "C:/www/django/templates".
  # Always use forward slashes, even on Windows.
  # Don't forget to use absolute paths, not relative paths.
  #"E:/workspace/pythonworkspace/MyDjangoSite/MyDjangoSite/templates",
  os.path.join(os.path.dirname(__file__), 'templates').replace('\\','/'),
)

说明:指定模版加载路径。其中os.path.dirname(__file__)为当前settings.py的文件路径,再连接上templates路径。
5、新建视图文件view.py

#vim: set fileencoding=utf-8:
#from django.template.loader import get_template
#from django.template import Context
#from django.http import HttpResponse
from django.shortcuts import render_to_response
def user_info(request):
  name = 'zbw'
  age = 24
  #t = get_template('user_info.html')
  #html = t.render(Context(locals()))
  #return HttpResponse(html)
  return render_to_response('user_info.html',locals())

说明:Django模板系统的基本规则: 写模板,创建 Template 对象,创建 Context , 调用 render() 方法。

可以看到上面代码中注释部分
#t = get_template(‘user_info.html') #html = t.render(Context(locals()))
#return HttpResponse(html)
get_template(‘user_info.html'),
使用了函数 django.template.loader.get_template() ,而不是手动从文件系统加载模板。 该 get_template() 函数以模板名称为参数,在文件系统中找出模块的位置,打开文件并返回一个编译好的 Template 对象。
render(Context(locals()))方法接收传入一套变量context。它将返回一个基于模板的展现字符串,模板中的变量和标签会被context值替换。其中Context(locals())等价于Context({‘name':'zbw','age':24}) ,locals()它返回的字典对所有局部变量的名称与值进行映射。
render_to_response Django为此提供了一个捷径,让你一次性地载入某个模板文件,渲染它,然后将此作为 HttpResponse返回。

6、修改urls.py

from django.conf.urls import patterns, include, url
from MyDjangoSite.views import user_info
# Uncomment the next two lines to enable the admin:
# from django.contrib import admin
# admin.autodiscover()
urlpatterns = patterns('',
  # Examples:
  # url(r'^$', 'MyDjangoSite.views.home', name='home'),
  # url(r'^MyDjangoSite/', include('MyDjangoSite.foo.urls')),
  # Uncomment the admin/doc line below to enable admin documentation:
  # url(r'^admin/doc/', include('django.contrib.admindocs.urls')),
  # Uncomment the next line to enable the admin:
  # url(r'^admin/', include(admin.site.urls)),
  url(r'^u/$',user_info),
 
)

7、启动开发服务器

基本一个简单的模版应用就完成,启动服务看效果!
效果如图:

模版的继承
减少重复编写相同代码,以及降低维护成本。直接看应用。
1、新建/templates/base.html

<html>
  <meta http-equiv="Content-type" content="text/html; charset=utf-8">
  <title>{% block title %}{% endblock %}</title>
  <head></head>
  <body>
    <h3 id="block-headTitle-endblock">{% block headTitle %}{% endblock %}</h3>
    {% block content %} {% endblock %}
    {% block footer %}
      <h3 id="嘿-这是继承了模版">嘿,这是继承了模版</h3>
    {% endblock%}
  </body>
</html>

2、修改/template/user_info.html,以及新建product_info.html
urser_info.html

{% extends "base.html" %}
{% block title %}用户信息{% endblock %}
 
<h3 id="block-headTitle-用户信息-endblock">{% block headTitle %}用户信息:{% endblock %}</h3>
{% block content %}
<p>姓名:{{name}}</p>
<p>年龄:{{age}}</p>
{% endblock %}

product_info.html

{% extends "base.html" %}
{% block title %}产品信息{% endblock %}
<h3 id="block-headTitle-产品信息-endblock">{% block headTitle %}产品信息:{% endblock %}</h3>
{% block content %}
  {{productName}}
{% endblock %}

3、编写视图逻辑,修改views.py

#vim: set fileencoding=utf-8:
#from django.template.loader import get_template
#from django.template import Context
#from django.http import HttpResponse
from django.shortcuts import render_to_response
def user_info(request):
  name = 'zbw'
  age = 24
  #t = get_template('user_info.html')
  #html = t.render(Context(locals()))
  #return HttpResponse(html)
  return render_to_response('user_info.html',locals())
def product_info(request):
  productName = '阿莫西林胶囊'
  return render_to_response('product_info.html',{'productName':productName})
 

4、修改urls.py

from django.conf.urls import patterns, include, url
from MyDjangoSite.views import user_info,product_info
# Uncomment the next two lines to enable the admin:
# from django.contrib import admin
# admin.autodiscover()
urlpatterns = patterns('',
  # Examples:
  # url(r'^$', 'MyDjangoSite.views.home', name='home'),
  # url(r'^MyDjangoSite/', include('MyDjangoSite.foo.urls')),
  # Uncomment the admin/doc line below to enable admin documentation:
  # url(r'^admin/doc/', include('django.contrib.admindocs.urls')),
  # Uncomment the next line to enable the admin:
  # url(r'^admin/', include(admin.site.urls)),
  url(r'^u/$',user_info),
  url(r'^p/$',product_info),
)
 

5、启动服务效果如下:

以上就是本文的全部内容,希望对大家的学习有所帮助。

Statement
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn
Python vs. C  : Learning Curves and Ease of UsePython vs. C : Learning Curves and Ease of UseApr 19, 2025 am 12:20 AM

Python is easier to learn and use, while C is more powerful but complex. 1. Python syntax is concise and suitable for beginners. Dynamic typing and automatic memory management make it easy to use, but may cause runtime errors. 2.C provides low-level control and advanced features, suitable for high-performance applications, but has a high learning threshold and requires manual memory and type safety management.

Python vs. C  : Memory Management and ControlPython vs. C : Memory Management and ControlApr 19, 2025 am 12:17 AM

Python and C have significant differences in memory management and control. 1. Python uses automatic memory management, based on reference counting and garbage collection, simplifying the work of programmers. 2.C requires manual management of memory, providing more control but increasing complexity and error risk. Which language to choose should be based on project requirements and team technology stack.

Python for Scientific Computing: A Detailed LookPython for Scientific Computing: A Detailed LookApr 19, 2025 am 12:15 AM

Python's applications in scientific computing include data analysis, machine learning, numerical simulation and visualization. 1.Numpy provides efficient multi-dimensional arrays and mathematical functions. 2. SciPy extends Numpy functionality and provides optimization and linear algebra tools. 3. Pandas is used for data processing and analysis. 4.Matplotlib is used to generate various graphs and visual results.

Python and C  : Finding the Right ToolPython and C : Finding the Right ToolApr 19, 2025 am 12:04 AM

Whether to choose Python or C depends on project requirements: 1) Python is suitable for rapid development, data science, and scripting because of its concise syntax and rich libraries; 2) C is suitable for scenarios that require high performance and underlying control, such as system programming and game development, because of its compilation and manual memory management.

Python for Data Science and Machine LearningPython for Data Science and Machine LearningApr 19, 2025 am 12:02 AM

Python is widely used in data science and machine learning, mainly relying on its simplicity and a powerful library ecosystem. 1) Pandas is used for data processing and analysis, 2) Numpy provides efficient numerical calculations, and 3) Scikit-learn is used for machine learning model construction and optimization, these libraries make Python an ideal tool for data science and machine learning.

Learning Python: Is 2 Hours of Daily Study Sufficient?Learning Python: Is 2 Hours of Daily Study Sufficient?Apr 18, 2025 am 12:22 AM

Is it enough to learn Python for two hours a day? It depends on your goals and learning methods. 1) Develop a clear learning plan, 2) Select appropriate learning resources and methods, 3) Practice and review and consolidate hands-on practice and review and consolidate, and you can gradually master the basic knowledge and advanced functions of Python during this period.

Python for Web Development: Key ApplicationsPython for Web Development: Key ApplicationsApr 18, 2025 am 12:20 AM

Key applications of Python in web development include the use of Django and Flask frameworks, API development, data analysis and visualization, machine learning and AI, and performance optimization. 1. Django and Flask framework: Django is suitable for rapid development of complex applications, and Flask is suitable for small or highly customized projects. 2. API development: Use Flask or DjangoRESTFramework to build RESTfulAPI. 3. Data analysis and visualization: Use Python to process data and display it through the web interface. 4. Machine Learning and AI: Python is used to build intelligent web applications. 5. Performance optimization: optimized through asynchronous programming, caching and code

Python vs. C  : Exploring Performance and EfficiencyPython vs. C : Exploring Performance and EfficiencyApr 18, 2025 am 12:20 AM

Python is better than C in development efficiency, but C is higher in execution performance. 1. Python's concise syntax and rich libraries improve development efficiency. 2.C's compilation-type characteristics and hardware control improve execution performance. When making a choice, you need to weigh the development speed and execution efficiency based on project needs.

See all articles

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

Video Face Swap

Video Face Swap

Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Tools

SublimeText3 Linux new version

SublimeText3 Linux new version

SublimeText3 Linux latest version

Dreamweaver Mac version

Dreamweaver Mac version

Visual web development tools

ZendStudio 13.5.1 Mac

ZendStudio 13.5.1 Mac

Powerful PHP integrated development environment

SecLists

SecLists

SecLists is the ultimate security tester's companion. It is a collection of various types of lists that are frequently used during security assessments, all in one place. SecLists helps make security testing more efficient and productive by conveniently providing all the lists a security tester might need. List types include usernames, passwords, URLs, fuzzing payloads, sensitive data patterns, web shells, and more. The tester can simply pull this repository onto a new test machine and he will have access to every type of list he needs.

SublimeText3 Mac version

SublimeText3 Mac version

God-level code editing software (SublimeText3)