基本思想:归并排序是一种典型的分治思想,把一个无序列表一分为二,对每个子序列再一分为二,继续下去,直到无法再进行划分为止。然后,就开始合并的过程,对每个子序列和另外一个子序列的元素进行比较,依次把小元素放入结果序列中进行合并,最终完成归并排序。
归并操作过程:
申请空间,使其大小为两个已经排序序列之和,该空间用来存放合并后的序列
设定两个指针,最初位置分别为两个已经排序序列的起始位置
比较两个指针所指向的元素,选择相对小的元素放入到合并空间,并移动指针到下一位置
重复步骤3直到某一指针达到序列尾
将另一序列剩下的所有元素直接复制到合并序列尾
上述说法是理论表述,下面用一个实际例子说明:
例如一个无序数组
[6,2,3,1,7]
首先将这个数组通过递归方式进行分解,直到:
[6],[2],[3],[1],[7]
然后开始合并排序,也是用递归的方式进行:
两个两个合并排序,得到:
[2,6],[1,3],[7]
上一步中,其实也是按照本步骤的方式合并的,只不过由于每个list中一个数,不能完全显示过程。下面则可以完全显示过程。
初始:
a = [2,6] b = [1,3] c = []
第1步,顺序从a,b中取出一个数字:2,1 比较大小后放入c中,并将该数字从原list中删除,结果是:
a = [2,6] b = [3] c = [1]
第2步,继续从a,b中按照顺序取出数字,也就是重复上面步骤,这次是:2,3 比较大小后放入c中,并将该数字从原list中删除,结果是:
a = [6] b = [3] c = [1,2]
第3步,再重复前边的步骤,结果是:
a = [6] b = [] c = [1,2,3]
最后一步,将6追加到c中,结果形成了:
a = [] b = [] c = [1,2,3,6]
通过反复应用上面的流程,实现[1,2,3,6]与[7]的合并
最终得到排序结果
[1,2,3,6,7]
本文列举了三种python的实现方法:
方法1:将前面讲述的过程翻译过来了,略先拙笨
#! /usr/bin/env python #coding:utf-8 def merge_sort(seq): if len(seq) ==1: return seq else: middle = len(seq)/2 left = merge_sort(seq[:middle]) right = merge_sort(seq[middle:]) i = 0 #left 计数 j = 0 #right 计数 k = 0 #总计数 while i < len(left) and j < len(right): if left[i] < right [j]: seq[k] = left[i] i +=1 k +=1 else: seq[k] = right[j] j +=1 k +=1 remain = left if i<j else right r = i if remain ==left else j while r<len(remain): seq[k] = remain[r] r +=1 k +=1 return seq
方法2:在按照顺序取数值方面,应用了list.pop()方法,代码更紧凑简洁
#! /usr/bin/env python #coding:utf-8 def merge_sort(lst): #此方法来自维基百科 if len(lst) <= 1: return lst def merge(left, right): merged = [] while left and right: merged.append(left.pop(0) if left[0] <= right[0] else right.pop(0)) while left: merged.append(left.pop(0)) while right: merged.append(right.pop(0)) return merged middle = int(len(lst) / 2) left = merge_sort(lst[:middle]) right = merge_sort(lst[middle:]) return merge(left, right)
方法3:原来在python的模块heapq中就提供了归并排序的方法,只要将分解后的结果导入该方法即可。
#! /usr/bin/env python #coding:utf-8 from heapq import merge def merge_sort(seq): if len(seq) <= 1: return m else: middle = len(seq)/2 left = merge_sort(seq[:middle]) right = merge_sort(seq[middle:]) return list(merge(left, right)) #heapq.merge() if __name__=="__main__": seq = [1,3,6,2,4] print merge_sort(seq)

Pythonisbothcompiledandinterpreted.WhenyourunaPythonscript,itisfirstcompiledintobytecode,whichisthenexecutedbythePythonVirtualMachine(PVM).Thishybridapproachallowsforplatform-independentcodebutcanbeslowerthannativemachinecodeexecution.

Python is not strictly line-by-line execution, but is optimized and conditional execution based on the interpreter mechanism. The interpreter converts the code to bytecode, executed by the PVM, and may precompile constant expressions or optimize loops. Understanding these mechanisms helps optimize code and improve efficiency.

There are many methods to connect two lists in Python: 1. Use operators, which are simple but inefficient in large lists; 2. Use extend method, which is efficient but will modify the original list; 3. Use the = operator, which is both efficient and readable; 4. Use itertools.chain function, which is memory efficient but requires additional import; 5. Use list parsing, which is elegant but may be too complex. The selection method should be based on the code context and requirements.

There are many ways to merge Python lists: 1. Use operators, which are simple but not memory efficient for large lists; 2. Use extend method, which is efficient but will modify the original list; 3. Use itertools.chain, which is suitable for large data sets; 4. Use * operator, merge small to medium-sized lists in one line of code; 5. Use numpy.concatenate, which is suitable for large data sets and scenarios with high performance requirements; 6. Use append method, which is suitable for small lists but is inefficient. When selecting a method, you need to consider the list size and application scenarios.

Compiledlanguagesofferspeedandsecurity,whileinterpretedlanguagesprovideeaseofuseandportability.1)CompiledlanguageslikeC arefasterandsecurebuthavelongerdevelopmentcyclesandplatformdependency.2)InterpretedlanguageslikePythonareeasiertouseandmoreportab

In Python, a for loop is used to traverse iterable objects, and a while loop is used to perform operations repeatedly when the condition is satisfied. 1) For loop example: traverse the list and print the elements. 2) While loop example: guess the number game until you guess it right. Mastering cycle principles and optimization techniques can improve code efficiency and reliability.

To concatenate a list into a string, using the join() method in Python is the best choice. 1) Use the join() method to concatenate the list elements into a string, such as ''.join(my_list). 2) For a list containing numbers, convert map(str, numbers) into a string before concatenating. 3) You can use generator expressions for complex formatting, such as ','.join(f'({fruit})'forfruitinfruits). 4) When processing mixed data types, use map(str, mixed_list) to ensure that all elements can be converted into strings. 5) For large lists, use ''.join(large_li

Pythonusesahybridapproach,combiningcompilationtobytecodeandinterpretation.1)Codeiscompiledtoplatform-independentbytecode.2)BytecodeisinterpretedbythePythonVirtualMachine,enhancingefficiencyandportability.


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SecLists
SecLists is the ultimate security tester's companion. It is a collection of various types of lists that are frequently used during security assessments, all in one place. SecLists helps make security testing more efficient and productive by conveniently providing all the lists a security tester might need. List types include usernames, passwords, URLs, fuzzing payloads, sensitive data patterns, web shells, and more. The tester can simply pull this repository onto a new test machine and he will have access to every type of list he needs.

Safe Exam Browser
Safe Exam Browser is a secure browser environment for taking online exams securely. This software turns any computer into a secure workstation. It controls access to any utility and prevents students from using unauthorized resources.

SublimeText3 Linux new version
SublimeText3 Linux latest version

SAP NetWeaver Server Adapter for Eclipse
Integrate Eclipse with SAP NetWeaver application server.
