SQLServer 2008中SQL增强之三 Merge(在一条语句中使用Insert,Update,Delete)
SQL Server 2008提供了一个增强的SQL命令Merge,用法参看MSDN:
功能:根据与源表联接的结果,对目标表执行插入、更新或删除操作。例如,根据在另一个表中找到的差异在一个表中插入、更新或删除行,可以对两个表进行同步。
我们看一个例子,假如,有一总产品列表,一个分店产品列表,需要从分店添加产品时更新总产品列表。
总产品表,分店产品表结构完全一致:
代码如下:
if OBJECT_ID('Demo_AllProducts') is not null
drop table Demo_AllProducts
go
Create table Demo_AllProducts
(PKID int not null identity(1,1) primary key
,DName Nvarchar(20) null
,DCode NVarchar(30) null
,DDate datetime null
)
go
--this SQL is only for SQL Server 2008
Insert into Demo_AllProducts
(DName,DCode,DDate)
values
('DemoA','AAA',GETDATE()),
('DemoB','BBB',GETDATE()),
('DemoC','CCC',GETDATE()),
('DemoD','DDD',GETDATE()),
('DemoE','EEE',GETDATE())
select * from Demo_AllProducts
--PKID DName DCode DDate
--1 DemoA AAA 2010-10-12 20:33:54.417
--2 DemoB BBB 2010-10-12 20:33:54.417
--3 DemoC CCC 2010-10-12 20:33:54.417
--4 DemoD DDD 2010-10-12 20:33:54.417
--5 DemoE EEE 2010-10-12 20:33:54.417
if OBJECT_ID('Demo_Shop1_Product') is not null
drop table Demo_Shop1_Product
go
Create table Demo_Shop1_Product
(PKID int not null identity(1,1) primary key
,DName Nvarchar(20) null
,DCode NVarchar(30) null
,DDate datetime null
)
go
--this SQL is only for SQL Server 2008
Insert into Demo_Shop1_Product
(DName,DCode,DDate)
values
('DemoA','AAA',GETDATE()),
('DemoB','CCC',GETDATE()),
('DemoF','FFF',GETDATE())
select * from Demo_Shop1_Product
--PKID DName DCode DDate
--1 DemoA AAA 2010-10-17 20:19:32.767
--2 DemoB CCC 2010-10-17 20:19:32.767
--3 DemoF FFF 2010-10-17 20:19:32.767
假定现在需要将分店数据完全合并到总产品表中,以编码字段为依据,如果产品名称不致,则用分店的产品名称替换总产品名称。
如果总产品表中不存在,则添加。
可选项:如果分店表中不存在,则从总产品表中删除分店中没有的行。如果这样,总产品表和分店表就完全同步了。实际操作中可能不需要删除目标表的行。
语句如下:
代码如下:
--确定目标表
Merge Into Demo_AllProducts p
--从数据源查找编码相同的产品
using Demo_Shop1_Product s on p.DCode=s.DCode
--如果编码相同,则更新目标表的名称
When Matched and P.DNames.DName Then Update set P.DName=s.DName
--如果目标表中不存在,则从数据源插入目标表
When Not Matched By Target Then Insert (DName,DCode,DDate) values (s.DName,s.DCode,s.DDate)
--如果数据源的行在源表中不存在,则删除源表行
When Not Matched By Source Then Delete;
此时,执行完成后,两个表的行均如下:
代码如下:
--PKID DName DCode DDate
--1 DemoA AAA 2010-10-17 20:31:00.827
--2 DemoB CCC 2010-10-17 20:31:00.827
--3 DemoF FFF 2010-10-17 20:31:00.827
如果不删除,语句如下:
代码如下:
--确定目标表
Merge Into Demo_AllProducts p
--从数据源查找编码相同的产品
using Demo_Shop1_Product s on p.DCode=s.DCode
--如果编码相同,则更新目标表的名称
When Matched and P.DNames.DName Then Update set P.DName=s.DName
--如果目标表中不存在,则从数据源插入目标表
When Not Matched By Target Then Insert (DName,DCode,DDate) values (s.DName,s.DCode,s.DDate);
执行后结果:
代码如下:
--PKID DName DCode DDate
--1 DemoA AAA 2010-10-17 20:30:28.350
--2 DemoB BBB 2010-10-17 20:30:28.350
--3 DemoB CCC 2010-10-17 20:30:28.350
--4 DemoD DDD 2010-10-17 20:30:28.350
--5 DemoE EEE 2010-10-17 20:30:28.350
--6 DemoF FFF 2010-10-17 20:31:00.827
--PKID DName DCode DDate
--1 DemoA AAA 2010-10-17 20:31:00.827
--2 DemoB CCC 2010-10-17 20:31:00.827
--3 DemoF FFF 2010-10-17 20:31:00.827
如果需要记录Merge语句影响的行,可以用Output子句,如果仅仅需要知道影响的行数,可以使用@@ROWCOUNT或ROWCOUNT_BIG(),修改后的示例如下:
代码如下:
--定义表变量以存储输出
Declare @tableVarRecord Table
(MPKID int not null identity(1,1) primary key
,PKID int null
,DName Nvarchar(20) null
,DCode NVarchar(30) null
,DDate datetime null
)
--确定目标表
Merge Into Demo_AllProducts p
--从数据源查找编码相同的产品
using Demo_Shop1_Product s on p.DCode=s.DCode
--如果编码相同,则更新目标表的名称
When Matched and P.DNames.DName Then
Update set P.DName=s.DName
--如果目标表中不存在,则从数据源插入目标表
When Not Matched By Target Then
Insert (DName,DCode,DDate) values (s.DName,s.DCode,s.DDate)
--如果数据源的行在源表中不存在,则删除源表行
When Not Matched By Source Then
Delete OUTPUT deleted.* INTO @tableVarRecord;
----Delete OUTPUT Inserted.* INTO @tableVarRecord;
--返回上个Merge语句影响的行数
select @@ROWCOUNT as Count1,ROWCOUNT_BIG() as Count2
select * from @tableVarRecord;
结果:
代码如下:
--影响的行数
--Count1 Count2
--5 5
--Deleted表的行
--MPKID PKID DName DCode DDate
--1 NULL NULL NULL NULL
--2 2 DemoB BBB 2010-10-17 21:42:30.700
--3 3 DemoC CCC 2010-10-17 21:42:30.700
--4 4 DemoD DDD 2010-10-17 21:42:30.700
--5 5 DemoE EEE 2010-10-17 21:42:30.700
关于@@ROWCOUNT和ROWCOUNT_BIG()的更多说明,请查阅MSDN:
如果影响的结果超过20亿,即整型的最大范围,请使用后者。

Stored procedures are precompiled SQL statements in MySQL for improving performance and simplifying complex operations. 1. Improve performance: After the first compilation, subsequent calls do not need to be recompiled. 2. Improve security: Restrict data table access through permission control. 3. Simplify complex operations: combine multiple SQL statements to simplify application layer logic.

The working principle of MySQL query cache is to store the results of SELECT query, and when the same query is executed again, the cached results are directly returned. 1) Query cache improves database reading performance and finds cached results through hash values. 2) Simple configuration, set query_cache_type and query_cache_size in MySQL configuration file. 3) Use the SQL_NO_CACHE keyword to disable the cache of specific queries. 4) In high-frequency update environments, query cache may cause performance bottlenecks and needs to be optimized for use through monitoring and adjustment of parameters.

The reasons why MySQL is widely used in various projects include: 1. High performance and scalability, supporting multiple storage engines; 2. Easy to use and maintain, simple configuration and rich tools; 3. Rich ecosystem, attracting a large number of community and third-party tool support; 4. Cross-platform support, suitable for multiple operating systems.

The steps for upgrading MySQL database include: 1. Backup the database, 2. Stop the current MySQL service, 3. Install the new version of MySQL, 4. Start the new version of MySQL service, 5. Recover the database. Compatibility issues are required during the upgrade process, and advanced tools such as PerconaToolkit can be used for testing and optimization.

MySQL backup policies include logical backup, physical backup, incremental backup, replication-based backup, and cloud backup. 1. Logical backup uses mysqldump to export database structure and data, which is suitable for small databases and version migrations. 2. Physical backups are fast and comprehensive by copying data files, but require database consistency. 3. Incremental backup uses binary logging to record changes, which is suitable for large databases. 4. Replication-based backup reduces the impact on the production system by backing up from the server. 5. Cloud backups such as AmazonRDS provide automation solutions, but costs and control need to be considered. When selecting a policy, database size, downtime tolerance, recovery time, and recovery point goals should be considered.

MySQLclusteringenhancesdatabaserobustnessandscalabilitybydistributingdataacrossmultiplenodes.ItusestheNDBenginefordatareplicationandfaulttolerance,ensuringhighavailability.Setupinvolvesconfiguringmanagement,data,andSQLnodes,withcarefulmonitoringandpe

Optimizing database schema design in MySQL can improve performance through the following steps: 1. Index optimization: Create indexes on common query columns, balancing the overhead of query and inserting updates. 2. Table structure optimization: Reduce data redundancy through normalization or anti-normalization and improve access efficiency. 3. Data type selection: Use appropriate data types, such as INT instead of VARCHAR, to reduce storage space. 4. Partitioning and sub-table: For large data volumes, use partitioning and sub-table to disperse data to improve query and maintenance efficiency.

TooptimizeMySQLperformance,followthesesteps:1)Implementproperindexingtospeedupqueries,2)UseEXPLAINtoanalyzeandoptimizequeryperformance,3)Adjustserverconfigurationsettingslikeinnodb_buffer_pool_sizeandmax_connections,4)Usepartitioningforlargetablestoi


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

SublimeText3 English version
Recommended: Win version, supports code prompts!

mPDF
mPDF is a PHP library that can generate PDF files from UTF-8 encoded HTML. The original author, Ian Back, wrote mPDF to output PDF files "on the fly" from his website and handle different languages. It is slower than original scripts like HTML2FPDF and produces larger files when using Unicode fonts, but supports CSS styles etc. and has a lot of enhancements. Supports almost all languages, including RTL (Arabic and Hebrew) and CJK (Chinese, Japanese and Korean). Supports nested block-level elements (such as P, DIV),

Dreamweaver CS6
Visual web development tools

PhpStorm Mac version
The latest (2018.2.1) professional PHP integrated development tool

VSCode Windows 64-bit Download
A free and powerful IDE editor launched by Microsoft
