Home  >  Article  >  Database  >  漫谈数据挖掘从入门到进阶

漫谈数据挖掘从入门到进阶

WBOY
WBOYOriginal
2016-06-07 17:56:291230browse

做数据挖掘也有些年头了,写这篇文一方面是写篇文,给有个朋友作为数据挖掘方面的参考,另一方面也是有抛砖引玉之意,希望能够和一些大牛交流,相互促进,让大家见笑了。 入门: 数据挖掘入门的书籍,中文的大体有这些: JiaweiHan的《数据挖掘概念与技术》

做数据挖掘也有些年头了,写这篇文一方面是写篇文,给有个朋友作为数据挖掘方面的参考,另一方面也是有抛砖引玉之意,希望能够和一些大牛交流,相互促进,让大家见笑了。

入门:

 

数据挖掘入门的书籍,中文的大体有这些:

Jiawei Han的《数据挖掘概念与技术》

Ian H. Witten / Eibe Frank的《数据挖掘 实用机器学习技术》

Tom Mitchell的《机器学习》

TOBY SEGARAN的《集体智慧编程》

Anand Rajaraman的《大数据》

Pang-Ning Tan的《数据挖掘导论》

Matthew A. Russell的《社交网站的数据挖掘与分析》

 

很多人的第一本数据挖掘书都是Jiawei Han的《数据挖掘概念与技术》,这本书也是我们组老板推荐的入门书(我个人觉得他之所以推荐是因为Han是他的老师)。其实我个人来说并不是很推荐把这本书。这本书什么都讲了,甚至很多书少有涉及的一些点比如OLAP的方面都有涉猎。但是其实这本书对于初学者不是那么友好的,给人一种教科书的感觉,如果你有大毅力读完这本书,也只能获得一些零碎的概念的认识,很难上手实际的项目。

 

我个人推荐的入门书是这两本:TOBY SEGARAN的《集体智慧编程》和Ian H. Witten / Eibe Frank的《数据挖掘 实用机器学习技术》

《集体智慧编程》很适合希望了解数据挖掘技术的程序员,这本书讲述了数据挖掘里面的很多实用的算法,而且最重要的是其讲述的方式不是像Han那种大牛掉书袋的讲法,而是从实际的例子入手,辅以python的代码,让你很快的就能理解到这种算法能够应用在哪个实际问题上,并且还能自己上手写写代码。唯一的缺点是不够深入,基本没有数学推导,而且不够全面,内容不够翔实。不过作为一本入门书这些缺点反而是帮助理解和入门的优点。

推荐的另一本《数据挖掘 实用机器学习技术》则相对上一本书要稍微难一点,不过在容易理解的程度上依然甩Han老师的书几条街,其作者就是著名的Weka的编写者。整本书的思想脉络也是尽可能的由易到难,从简单的模型入手扩展到现实生活中实际的算法问题,最难能可贵的是书的最后还稍微讲了下如何使用weka,这样大家就能在学习算法之余能够用weka做做小的实验,有直观的认识。 

看完上述两本书后,我觉得大体数据挖掘就算有个初步的了解了。往后再怎么继续入门,就看个人需求了。

如果是只是想要稍微了解下相关的技术,或者作为业余爱好,则可随便再看看Anand Rajaraman的《大数据》以及Matthew A. Russell的《社交网站的数据挖掘与分析》。前者是斯坦福的"Web挖掘"这门课程的材料基础上总结而成。选取了很多数据挖掘里的小点作为展开的,不够系统,但讲的挺好,所以适合有个初步的了解后再看。后者则亦是如此,要注意的是里面很多api因为GFS的缘故不能直接实验,也是个遗憾

 

如果是继续相关的研究学习,我认为则还需要先过一遍Tom Mitchell的《机器学习》。这本书可以看做是对于十多年前的机器学习的一个综述,作者简单明了的讲述了很多流行的算法(十年前的),并且对于各个算法的适用点和特点都有详细的解说,轻快地在一本薄薄的小书里给了大家一个机器学习之旅。

 

进阶:

 

进阶这个话题就难说了,毕竟大家对于进阶的理解各有不同,是个仁者见仁的问题。就我个人来说,则建议如下展开:

 

视频学习方面:

可以看看斯坦福的《机器学习》这门课程的视频,最近听说网易公开课已经全部翻译了,而且给出了双语字幕,更加容易学习了^_^

 

书籍学习方面:

我个人推荐的是这样:可以先看看李航的《统计学习方法》,这本书着重于数学推导,网站空间,能让我们很快的对于一些算法的理解更加深入。

有了上面这本书的基础,就可以开始啃一些经典名著了。这些名著看的顺序可以不分先后,也可以同时学习:

Richard O. Duda的《模式分类》这本书是力荐,很多高校的数据挖掘导论课程的教科书便是这本(也是我的数据挖掘入门书,很有感情的)。如果你不通读这本书,你会发现在你研究很多问题的时候,甚至一些相对简单的问题(比如贝叶斯在高斯假设下为什么退化成线性分类器)都要再重新回头读这本书。

Christopher M. Bishop的《Pattern Recognition And Machine Learning》这本书也是经典巨著,整本书写的非常清爽。

《The Elements of Statistical Learning》这本书有句很好的吐槽“机器学习 -- 从入门到精通”可以作为这本书的副标题。可以看出这本书对于机器学习进阶的重要性。值得一说的是这本书虽然有中文版,但是翻译之烂也甚是有名,听说是学体育的翻译的。

Hoppner, Frank的《Guide to Intelligent Data Analysis》这本书相对于上面基本经典巨著并不出名,但是写的甚好,是knime官网上推荐的,标榜的是解决实际生活中的数据挖掘问题,讲述了CRISP-DM标准化流程,每章后面给出了R和knime的应用例子。

以前写过的读书笔记

 

项目方面:

Statement:
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn