search
HomeDatabaseMysql Tutorialmysql left join用法分析

left join这个命令我们会常用到了,LEFT JOIN 关键字会从左表 (Persons) 那里返回所有的行,即使在右表 (Orders) 中没有匹配的行,下面我们来看看关于它的一些用法与其它命令配合使用的问题。

先看它的语法

LEFT JOIN 关键字会从左表 (table_name1) 那里返回所有的行,即使在右表
(table_name2) 中没有匹配的行。

LEFT JOIN 关键字语法

 代码如下 复制代码

SELECT column_name(s)
FROM table_name1
LEFT JOIN table_name2
ON table_name1.column_name=table_name2.column_name

给个通俗的解释吧.
例表a
aid adate
1 a1
2 a2
3 a3
表b
bid bdate
1 b1
2 b2
4 b4
两个表a,b相连接,要取出id相同的字段

 代码如下 复制代码
* from a inner join b on a.aid = b.bid

这是仅取出匹配的数据.
此时的取出的是:
1 a1 b1
2 a2 b2
那么left join 指:

 代码如下 复制代码
select * from a left join b on a.aid = b.bid

首先取出a表中所有数据,然后再加上与a,b匹配的的数据
此时的取出的是:
1 a1 b1
2 a2 b2
3 a3 空字符
同样的也有right join
指的是首先取出b表中所有数据,然后再加上与a,b匹配的的数据
此时的取出的是:
1 a1 b1
2 a2 b2
4 空字符 b4

在left join中on 与where的分析

•ON 子句与 WHERE 子句的不同
•一种更好地理解带有 WHERE ... IS NULL 子句的复杂匹配条件的简单方法

ON 条件(“A LEFT JOIN B ON 条件表达式”中的ON)用来决定如何从 B 表中检索数据行。

如果 B 表中没有任何一行数据匹配 ON 的条件,将会额外生成一行所有列为 NULL 的数据

在匹配阶段 WHERE 子句的条件都不会被使用。仅在匹配阶段完成以后,WHERE 子句条件才会被使用。它将从匹配阶段产生的数据中检索过滤。

让我们看一个 LFET JOIN 示例:

 代码如下 复制代码

mysql> CREATE TABLE `product` (
  `id` int(10) unsigned NOT NULL auto_increment,
  `amount` int(10) unsigned default NULL,
  PRIMARY KEY  (`id`)
) ENGINE=MyISAM AUTO_INCREMENT=5 DEFAULT CHARSET=latin1
 
mysql> CREATE TABLE `product_details` (
  `id` int(10) unsigned NOT NULL,
  `weight` int(10) unsigned default NULL,
  `exist` int(10) unsigned default NULL,
  PRIMARY KEY  (`id`)
) ENGINE=MyISAM DEFAULT CHARSET=latin1
 
mysql> INSERT INTO product (id,amount)
       VALUES (1,100),(2,200),(3,300),(4,400);
Query OK, 4 rows affected (0.00 sec)
Records: 4  Duplicates: 0  Warnings: 0
 
mysql> INSERT INTO product_details (id,weight,exist)
       VALUES (2,22,0),(4,44,1),(5,55,0),(6,66,1);
Query OK, 4 rows affected (0.00 sec)
Records: 4  Duplicates: 0  Warnings: 0
 
mysql> SELECT * FROM product;
+----+--------+
| id | amount |
+----+--------+
|  1 |    100 |
|  2 |    200 |
|  3 |    300 |
|  4 |    400 |
+----+--------+
4 rows in set (0.00 sec)
 
mysql> SELECT * FROM product_details;
+----+--------+-------+
| id | weight | exist |
+----+--------+-------+
|  2 |     22 |     0 |
|  4 |     44 |     1 |
|  5 |     55 |     0 |
|  6 |     66 |     1 |
+----+--------+-------+
4 rows in set (0.00 sec)
 
mysql> SELECT * FROM product LEFT JOIN product_details
       ON (product.id = product_details.id);
+----+--------+------+--------+-------+
| id | amount | id   | weight | exist |
+----+--------+------+--------+-------+
|  1 |    100 | NULL |   NULL |  NULL |
|  2 |    200 |    2 |     22 |     0 |
|  3 |    300 | NULL |   NULL |  NULL |
|  4 |    400 |    4 |     44 |     1 |
+----+--------+------+--------+-------+
4 rows in set (0.00 sec)

ON 子句和 WHERE 子句有什么不同?

一个问题:下面两个查询的结果集有什么不同么?

 代码如下 复制代码

1. SELECT * FROM product LEFT JOIN product_details
         ON (product.id = product_details.id)
         AND   product_details.id=2;
2. SELECT * FROM product LEFT JOIN product_details
         ON (product.id = product_details.id)
         WHERE product_details.id=2;

用例子来理解最好不过了:

 代码如下 复制代码
mysql> SELECT * FROM product LEFT JOIN product_details
       ON (product.id = product_details.id)
       AND product_details.id=2;
+----+--------+------+--------+-------+
| id | amount | id   | weight | exist |
+----+--------+------+--------+-------+
|  1 |    100 | NULL |   NULL |  NULL |
|  2 |    200 |    2 |     22 |     0 |
|  3 |    300 | NULL |   NULL |  NULL |
|  4 |    400 | NULL |   NULL |  NULL |
+----+--------+------+--------+-------+
4 rows in set (0.00 sec)
 
mysql> SELECT * FROM product LEFT JOIN product_details
       ON (product.id = product_details.id)
       WHERE product_details.id=2;
+----+--------+----+--------+-------+
| id | amount | id | weight | exist |
+----+--------+----+--------+-------+
|  2 |    200 |  2 |     22 |     0 |
+----+--------+----+--------+-------+
1 row in set (0.01 sec)

第一条查询使用 ON 条件决定了从 LEFT JOIN的 product_details表中检索符合的所有数据行。

第二条查询做了简单的LEFT JOIN,然后使用 WHERE 子句从 LEFT JOIN的数据中过滤掉不符合条件的数据行

Statement
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn
How to Grant Permissions to New MySQL UsersHow to Grant Permissions to New MySQL UsersMay 09, 2025 am 12:16 AM

TograntpermissionstonewMySQLusers,followthesesteps:1)AccessMySQLasauserwithsufficientprivileges,2)CreateanewuserwiththeCREATEUSERcommand,3)UsetheGRANTcommandtospecifypermissionslikeSELECT,INSERT,UPDATE,orALLPRIVILEGESonspecificdatabasesortables,and4)

How to Add Users in MySQL: A Step-by-Step GuideHow to Add Users in MySQL: A Step-by-Step GuideMay 09, 2025 am 12:14 AM

ToaddusersinMySQLeffectivelyandsecurely,followthesesteps:1)UsetheCREATEUSERstatementtoaddanewuser,specifyingthehostandastrongpassword.2)GrantnecessaryprivilegesusingtheGRANTstatement,adheringtotheprincipleofleastprivilege.3)Implementsecuritymeasuresl

MySQL: Adding a new user with complex permissionsMySQL: Adding a new user with complex permissionsMay 09, 2025 am 12:09 AM

ToaddanewuserwithcomplexpermissionsinMySQL,followthesesteps:1)CreatetheuserwithCREATEUSER'newuser'@'localhost'IDENTIFIEDBY'password';.2)Grantreadaccesstoalltablesin'mydatabase'withGRANTSELECTONmydatabase.TO'newuser'@'localhost';.3)Grantwriteaccessto'

MySQL: String Data Types and CollationsMySQL: String Data Types and CollationsMay 09, 2025 am 12:08 AM

The string data types in MySQL include CHAR, VARCHAR, BINARY, VARBINARY, BLOB, and TEXT. The collations determine the comparison and sorting of strings. 1.CHAR is suitable for fixed-length strings, VARCHAR is suitable for variable-length strings. 2.BINARY and VARBINARY are used for binary data, and BLOB and TEXT are used for large object data. 3. Sorting rules such as utf8mb4_unicode_ci ignores upper and lower case and is suitable for user names; utf8mb4_bin is case sensitive and is suitable for fields that require precise comparison.

MySQL: What length should I use for VARCHARs?MySQL: What length should I use for VARCHARs?May 09, 2025 am 12:06 AM

The best MySQLVARCHAR column length selection should be based on data analysis, consider future growth, evaluate performance impacts, and character set requirements. 1) Analyze the data to determine typical lengths; 2) Reserve future expansion space; 3) Pay attention to the impact of large lengths on performance; 4) Consider the impact of character sets on storage. Through these steps, the efficiency and scalability of the database can be optimized.

MySQL BLOB : are there any limits?MySQL BLOB : are there any limits?May 08, 2025 am 12:22 AM

MySQLBLOBshavelimits:TINYBLOB(255bytes),BLOB(65,535bytes),MEDIUMBLOB(16,777,215bytes),andLONGBLOB(4,294,967,295bytes).TouseBLOBseffectively:1)ConsiderperformanceimpactsandstorelargeBLOBsexternally;2)Managebackupsandreplicationcarefully;3)Usepathsinst

MySQL : What are the best tools to automate users creation?MySQL : What are the best tools to automate users creation?May 08, 2025 am 12:22 AM

The best tools and technologies for automating the creation of users in MySQL include: 1. MySQLWorkbench, suitable for small to medium-sized environments, easy to use but high resource consumption; 2. Ansible, suitable for multi-server environments, simple but steep learning curve; 3. Custom Python scripts, flexible but need to ensure script security; 4. Puppet and Chef, suitable for large-scale environments, complex but scalable. Scale, learning curve and integration needs should be considered when choosing.

MySQL: Can I search inside a blob?MySQL: Can I search inside a blob?May 08, 2025 am 12:20 AM

Yes,youcansearchinsideaBLOBinMySQLusingspecifictechniques.1)ConverttheBLOBtoaUTF-8stringwithCONVERTfunctionandsearchusingLIKE.2)ForcompressedBLOBs,useUNCOMPRESSbeforeconversion.3)Considerperformanceimpactsanddataencoding.4)Forcomplexdata,externalproc

See all articles

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

Video Face Swap

Video Face Swap

Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Tools

Safe Exam Browser

Safe Exam Browser

Safe Exam Browser is a secure browser environment for taking online exams securely. This software turns any computer into a secure workstation. It controls access to any utility and prevents students from using unauthorized resources.

ZendStudio 13.5.1 Mac

ZendStudio 13.5.1 Mac

Powerful PHP integrated development environment

SecLists

SecLists

SecLists is the ultimate security tester's companion. It is a collection of various types of lists that are frequently used during security assessments, all in one place. SecLists helps make security testing more efficient and productive by conveniently providing all the lists a security tester might need. List types include usernames, passwords, URLs, fuzzing payloads, sensitive data patterns, web shells, and more. The tester can simply pull this repository onto a new test machine and he will have access to every type of list he needs.

PhpStorm Mac version

PhpStorm Mac version

The latest (2018.2.1) professional PHP integrated development tool

MinGW - Minimalist GNU for Windows

MinGW - Minimalist GNU for Windows

This project is in the process of being migrated to osdn.net/projects/mingw, you can continue to follow us there. MinGW: A native Windows port of the GNU Compiler Collection (GCC), freely distributable import libraries and header files for building native Windows applications; includes extensions to the MSVC runtime to support C99 functionality. All MinGW software can run on 64-bit Windows platforms.