SQLSERVER中WITH(NOLOCK)详解 [转] NOLOCK 和 READPAST 都是处理查询、插入、删除等操作时候,如何应对锁住的数据记录。 简单来说: NOLOCK 可能把没有提交事务的数据也显示出来. READPAST 会把被锁住的行不显示出来 不使用 NOLOCK 和 READPAST ,在 Select
SQLSERVER中WITH(NOLOCK)详解 [转]
NOLOCK 和 READPAST 都是处理查询、插入、删除等操作时候,如何应对锁住的数据记录。
简单来说:
NOLOCK 可能把没有提交事务的数据也显示出来.
READPAST 会把被锁住的行不显示出来
不使用 NOLOCK 和 READPAST ,网站空间,在 Select 操作时候则有可能报错误:事务(进程 ID **)与另一个进程被死锁在 锁 资源上,虚拟主机,并且已被选作死锁牺牲品。
演示一 没有提交的事务,NOLOCK 和 READPAST处理的策略:
查询窗口一请执行如下脚本:
CREATE TABLE t1 (c1 int IDENTITY(1,1), c2 int)
go
BEGIN TRANSACTION
insert t1(c2) values(1)
在查询窗口一执行后,查询窗口二执行如下脚本:
select count(*) from t1 WITH(NOLOCK)
select count(*) from t1 WITH(READPAST)
结果与分析:
查询窗口二依次显示统计结果为: 1、0
查询窗口一的命令没有提交事务,所以 READPAST 不会计算没有提交事务的这一条记录,这一条被锁住了,READPAST 看不到;而NOLOCK则可以看到被锁住的这一条记录。
如果这时候我们在查询窗口二中执行:
select count(*) from t1 就会看到这个执行很久不能执行完毕,因为这个查询遇到了一个死锁。
清除掉这个测试环境,需要在查询窗口一中再执行如下语句:
ROLLBACK TRANSACTION
drop table t1
演示二:对被锁住的记录,服务器空间,NOLOCK 和 READPAST处理的策略
这个演示同样需要两个查询窗口。
请在查询窗口一中执行如下语句:
CREATE TABLE t2 (UserID int , NickName nvarchar(50))
go
insert t2(UserID,NickName) values(1,'lucas')
insert t2(UserID,NickName) values(2,'fuckcpp')
go
BEGIN TRANSACTION
update t2 set NickName = 'fuckcpp.net' where UserID = 2
请在查询窗口二中执行如下脚本:
select * from t2 WITH(NOLOCK) where UserID = 2
select * from t2 WITH(READPAST) where UserID = 2
结果与分析:
查询窗口二中, NOLOCK 对应的查询结果中我们看到了修改后的记录,READPAST对应的查询结果中我们没有看到任何一条记录。 这种情况下就可能发生脏读
posted on

Stored procedures are precompiled SQL statements in MySQL for improving performance and simplifying complex operations. 1. Improve performance: After the first compilation, subsequent calls do not need to be recompiled. 2. Improve security: Restrict data table access through permission control. 3. Simplify complex operations: combine multiple SQL statements to simplify application layer logic.

The working principle of MySQL query cache is to store the results of SELECT query, and when the same query is executed again, the cached results are directly returned. 1) Query cache improves database reading performance and finds cached results through hash values. 2) Simple configuration, set query_cache_type and query_cache_size in MySQL configuration file. 3) Use the SQL_NO_CACHE keyword to disable the cache of specific queries. 4) In high-frequency update environments, query cache may cause performance bottlenecks and needs to be optimized for use through monitoring and adjustment of parameters.

The reasons why MySQL is widely used in various projects include: 1. High performance and scalability, supporting multiple storage engines; 2. Easy to use and maintain, simple configuration and rich tools; 3. Rich ecosystem, attracting a large number of community and third-party tool support; 4. Cross-platform support, suitable for multiple operating systems.

The steps for upgrading MySQL database include: 1. Backup the database, 2. Stop the current MySQL service, 3. Install the new version of MySQL, 4. Start the new version of MySQL service, 5. Recover the database. Compatibility issues are required during the upgrade process, and advanced tools such as PerconaToolkit can be used for testing and optimization.

MySQL backup policies include logical backup, physical backup, incremental backup, replication-based backup, and cloud backup. 1. Logical backup uses mysqldump to export database structure and data, which is suitable for small databases and version migrations. 2. Physical backups are fast and comprehensive by copying data files, but require database consistency. 3. Incremental backup uses binary logging to record changes, which is suitable for large databases. 4. Replication-based backup reduces the impact on the production system by backing up from the server. 5. Cloud backups such as AmazonRDS provide automation solutions, but costs and control need to be considered. When selecting a policy, database size, downtime tolerance, recovery time, and recovery point goals should be considered.

MySQLclusteringenhancesdatabaserobustnessandscalabilitybydistributingdataacrossmultiplenodes.ItusestheNDBenginefordatareplicationandfaulttolerance,ensuringhighavailability.Setupinvolvesconfiguringmanagement,data,andSQLnodes,withcarefulmonitoringandpe

Optimizing database schema design in MySQL can improve performance through the following steps: 1. Index optimization: Create indexes on common query columns, balancing the overhead of query and inserting updates. 2. Table structure optimization: Reduce data redundancy through normalization or anti-normalization and improve access efficiency. 3. Data type selection: Use appropriate data types, such as INT instead of VARCHAR, to reduce storage space. 4. Partitioning and sub-table: For large data volumes, use partitioning and sub-table to disperse data to improve query and maintenance efficiency.

TooptimizeMySQLperformance,followthesesteps:1)Implementproperindexingtospeedupqueries,2)UseEXPLAINtoanalyzeandoptimizequeryperformance,3)Adjustserverconfigurationsettingslikeinnodb_buffer_pool_sizeandmax_connections,4)Usepartitioningforlargetablestoi


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

SublimeText3 English version
Recommended: Win version, supports code prompts!

ZendStudio 13.5.1 Mac
Powerful PHP integrated development environment

MantisBT
Mantis is an easy-to-deploy web-based defect tracking tool designed to aid in product defect tracking. It requires PHP, MySQL and a web server. Check out our demo and hosting services.

Dreamweaver CS6
Visual web development tools

mPDF
mPDF is a PHP library that can generate PDF files from UTF-8 encoded HTML. The original author, Ian Back, wrote mPDF to output PDF files "on the fly" from his website and handle different languages. It is slower than original scripts like HTML2FPDF and produces larger files when using Unicode fonts, but supports CSS styles etc. and has a lot of enhancements. Supports almost all languages, including RTL (Arabic and Hebrew) and CJK (Chinese, Japanese and Korean). Supports nested block-level elements (such as P, DIV),
