MySQL双向复制(主主模式) 环境: A: 192.168.1.1 没有数据 B: 192.168.1.2 没有数据 在A的[mysqld]字段下增加: auto-
MySQL双向复制(主主模式)
环境:
A: 192.168.1.1 没有数据
B: 192.168.1.2 没有数据
在A的[mysqld]字段下增加:
auto-increment-increment = 2 (增长值) A上就会 1,3,5,7这样增长
auto-increment-offset = 1 (初始值)
在B的[mysqld]字段下增加:
auto-increment-increment = 2 (增长值) B上就会2,4,6,8这样增长
auto-increment-offset = 2 (初始值)
因为是双向备份,可能产生主键重复等问题,,添加这两个参数防止主键重复
注意:server-id = 1 改成 server-id = 2
重启数据库
在A上
mysql> grant replication slave on *.* to 'beifen'@'192.168.1.2' identified by '123'; 创建 beifen用户,密码设置为123 并授权给192.168.1.2使用。
在B上
mysql> grant replication slave on *.* to 'beifen'@'192.168.1.1' identified by '123'; 创建 beifen用户,密码设置为123 并授权给192.168.1.1使用。
在A上:
查询主数据库的状态,并记下File和Position的值,
在B上
在A上:
mysql>change master to master_host=’192.168.1.2’,master_user=’beifen’,master_password=’123’,master_log_file=’mysql-bin.000016’ ,master_log_pos=106;
在B上:
mysql>change master to master_host=’192.168.1.1’,master_user=’beifen’,master_password=’123’,master_log_file=’mysql-bin.000010’ ,master_log_pos=257;
在A .、B上分别执行
启动slave同步
mysql > start slave;
在A、B上分别检查主从同步,如果您看到Slave_IO_Running和Slave_SQL_Running均为Yes,则主从复制连接正常。
mysql > show slave status\G

MySQL is an open source relational database management system, mainly used to store and retrieve data quickly and reliably. Its working principle includes client requests, query resolution, execution of queries and return results. Examples of usage include creating tables, inserting and querying data, and advanced features such as JOIN operations. Common errors involve SQL syntax, data types, and permissions, and optimization suggestions include the use of indexes, optimized queries, and partitioning of tables.

MySQL is an open source relational database management system suitable for data storage, management, query and security. 1. It supports a variety of operating systems and is widely used in Web applications and other fields. 2. Through the client-server architecture and different storage engines, MySQL processes data efficiently. 3. Basic usage includes creating databases and tables, inserting, querying and updating data. 4. Advanced usage involves complex queries and stored procedures. 5. Common errors can be debugged through the EXPLAIN statement. 6. Performance optimization includes the rational use of indexes and optimized query statements.

MySQL is chosen for its performance, reliability, ease of use, and community support. 1.MySQL provides efficient data storage and retrieval functions, supporting multiple data types and advanced query operations. 2. Adopt client-server architecture and multiple storage engines to support transaction and query optimization. 3. Easy to use, supports a variety of operating systems and programming languages. 4. Have strong community support and provide rich resources and solutions.

InnoDB's lock mechanisms include shared locks, exclusive locks, intention locks, record locks, gap locks and next key locks. 1. Shared lock allows transactions to read data without preventing other transactions from reading. 2. Exclusive lock prevents other transactions from reading and modifying data. 3. Intention lock optimizes lock efficiency. 4. Record lock lock index record. 5. Gap lock locks index recording gap. 6. The next key lock is a combination of record lock and gap lock to ensure data consistency.

The main reasons for poor MySQL query performance include not using indexes, wrong execution plan selection by the query optimizer, unreasonable table design, excessive data volume and lock competition. 1. No index causes slow querying, and adding indexes can significantly improve performance. 2. Use the EXPLAIN command to analyze the query plan and find out the optimizer error. 3. Reconstructing the table structure and optimizing JOIN conditions can improve table design problems. 4. When the data volume is large, partitioning and table division strategies are adopted. 5. In a high concurrency environment, optimizing transactions and locking strategies can reduce lock competition.

In database optimization, indexing strategies should be selected according to query requirements: 1. When the query involves multiple columns and the order of conditions is fixed, use composite indexes; 2. When the query involves multiple columns but the order of conditions is not fixed, use multiple single-column indexes. Composite indexes are suitable for optimizing multi-column queries, while single-column indexes are suitable for single-column queries.

To optimize MySQL slow query, slowquerylog and performance_schema need to be used: 1. Enable slowquerylog and set thresholds to record slow query; 2. Use performance_schema to analyze query execution details, find out performance bottlenecks and optimize.

MySQL and SQL are essential skills for developers. 1.MySQL is an open source relational database management system, and SQL is the standard language used to manage and operate databases. 2.MySQL supports multiple storage engines through efficient data storage and retrieval functions, and SQL completes complex data operations through simple statements. 3. Examples of usage include basic queries and advanced queries, such as filtering and sorting by condition. 4. Common errors include syntax errors and performance issues, which can be optimized by checking SQL statements and using EXPLAIN commands. 5. Performance optimization techniques include using indexes, avoiding full table scanning, optimizing JOIN operations and improving code readability.


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

MantisBT
Mantis is an easy-to-deploy web-based defect tracking tool designed to aid in product defect tracking. It requires PHP, MySQL and a web server. Check out our demo and hosting services.

Dreamweaver Mac version
Visual web development tools

ZendStudio 13.5.1 Mac
Powerful PHP integrated development environment

MinGW - Minimalist GNU for Windows
This project is in the process of being migrated to osdn.net/projects/mingw, you can continue to follow us there. MinGW: A native Windows port of the GNU Compiler Collection (GCC), freely distributable import libraries and header files for building native Windows applications; includes extensions to the MSVC runtime to support C99 functionality. All MinGW software can run on 64-bit Windows platforms.

SublimeText3 Chinese version
Chinese version, very easy to use