接上一篇... 见: http://www.linuxidc.com/Linux/2013-04/82787.htm Group 为了方便我还是把我的表结构贴上来: 和数据库一样g
接上一篇... 见:
为了方便我还是把我的表结构贴上来:
和数据库一样group常常用于统计。MongoDB的group还有很多限制,如:返回结果集不能超过16M,, group操作不会处理超过10000个唯一键,好像还不能利用索引[不很确定]。
Group大约需要一下几个参数。
下面我用Java对他们做一些测试。
我们以age年龄统计集合中存在的用户。Spring Schema和上次的一样。有了MongoTemplate对象我们可以做所有事的。以age统计用户测试代码如:
@Test
public void testGroupBy() throws Exception {
String reduce = "function(doc, aggr){" +
" aggr.count += 1;" +
" }";
Query query = Query.query(Criteria.where("age").exists(true));
DBObject result = mongoTemplate.getCollection("person").group(new BasicDBObject("age", 1),
query.getQueryObject(),
new BasicDBObject("count", 0),
reduce);
Map map = result.toMap();
System.out.println(map);
for (Map.Entry o : map.entrySet()) {
System.out.println(o.getKey() + " " + o.getValue());
}
}
key为new BasicDBObject("age", 1)
cond为:Criteria.where("age").exists(true)。即用户中存在age字段的。
initial为:new BasicDBObject("count", 0),即初始化reduce中人的个数为count为0。假如我们想在查询的时候给每个年龄的人增加10个假用户。我们只需要传入BasicDBObject("count", 10).
reduce为:reduce的javascript函数
上面的执行输出如:
2 [age:23.0, count:1.0]
1 [age:25.0, count:1.0]
0 [age:24.0, count:1.0]
前面的是一个序号,是Mongo的java-driver加上去的。我们可以看到结果在后面。

MySQL'sBLOBissuitableforstoringbinarydatawithinarelationaldatabase,whileNoSQLoptionslikeMongoDB,Redis,andCassandraofferflexible,scalablesolutionsforunstructureddata.BLOBissimplerbutcanslowdownperformancewithlargedata;NoSQLprovidesbetterscalabilityand

ToaddauserinMySQL,use:CREATEUSER'username'@'host'IDENTIFIEDBY'password';Here'showtodoitsecurely:1)Choosethehostcarefullytocontrolaccess.2)SetresourcelimitswithoptionslikeMAX_QUERIES_PER_HOUR.3)Usestrong,uniquepasswords.4)EnforceSSL/TLSconnectionswith

ToavoidcommonmistakeswithstringdatatypesinMySQL,understandstringtypenuances,choosetherighttype,andmanageencodingandcollationsettingseffectively.1)UseCHARforfixed-lengthstrings,VARCHARforvariable-length,andTEXT/BLOBforlargerdata.2)Setcorrectcharacters

MySQloffersechar, Varchar, text, Anddenumforstringdata.usecharforfixed-Lengthstrings, VarcharerForvariable-Length, text forlarger text, AndenumforenforcingdataAntegritywithaetofvalues.

Optimizing MySQLBLOB requests can be done through the following strategies: 1. Reduce the frequency of BLOB query, use independent requests or delay loading; 2. Select the appropriate BLOB type (such as TINYBLOB); 3. Separate the BLOB data into separate tables; 4. Compress the BLOB data at the application layer; 5. Index the BLOB metadata. These methods can effectively improve performance by combining monitoring, caching and data sharding in actual applications.

Mastering the method of adding MySQL users is crucial for database administrators and developers because it ensures the security and access control of the database. 1) Create a new user using the CREATEUSER command, 2) Assign permissions through the GRANT command, 3) Use FLUSHPRIVILEGES to ensure permissions take effect, 4) Regularly audit and clean user accounts to maintain performance and security.

ChooseCHARforfixed-lengthdata,VARCHARforvariable-lengthdata,andTEXTforlargetextfields.1)CHARisefficientforconsistent-lengthdatalikecodes.2)VARCHARsuitsvariable-lengthdatalikenames,balancingflexibilityandperformance.3)TEXTisidealforlargetextslikeartic

Best practices for handling string data types and indexes in MySQL include: 1) Selecting the appropriate string type, such as CHAR for fixed length, VARCHAR for variable length, and TEXT for large text; 2) Be cautious in indexing, avoid over-indexing, and create indexes for common queries; 3) Use prefix indexes and full-text indexes to optimize long string searches; 4) Regularly monitor and optimize indexes to keep indexes small and efficient. Through these methods, we can balance read and write performance and improve database efficiency.


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

MinGW - Minimalist GNU for Windows
This project is in the process of being migrated to osdn.net/projects/mingw, you can continue to follow us there. MinGW: A native Windows port of the GNU Compiler Collection (GCC), freely distributable import libraries and header files for building native Windows applications; includes extensions to the MSVC runtime to support C99 functionality. All MinGW software can run on 64-bit Windows platforms.

Dreamweaver Mac version
Visual web development tools

MantisBT
Mantis is an easy-to-deploy web-based defect tracking tool designed to aid in product defect tracking. It requires PHP, MySQL and a web server. Check out our demo and hosting services.

WebStorm Mac version
Useful JavaScript development tools

Zend Studio 13.0.1
Powerful PHP integrated development environment
