在数据主机上建立tbs_usage表反映数据中数据文件的使用量,其中tbs_timeid为该表主键,作为唯一标识当日数据库表空间的id构造tbs
由于最近业务量大增大,,导致表空间增长速度变得很快,客户也开始担忧表空间的增长率。因此也提出了每日监控表空间增长量的需求。笔者根据客户的需求,在这里写了个简单的脚本,主体思想是通过,将每日查询到的表空间增长率插入到自己建的表中,然后通过构造查询语句,反映出表空间的增长率,具体实施不走如下
在数据主机上建立tbs_usage表反映数据中数据文件的使用量,其中tbs_timeid为该表主键,作为唯一标识当日数据库表空间的id构造tbs_timeid为df.tablespace_name||"-"||(sysdate)
1、pansky用户作为日常管理,目前主要用户表空间数据量的监控
SQL> create user pansky identified by pansky default tablespace users quota 50M on users;
User created.
SQL> grant create session to pansky;
Grant succeeded.
SQL> grant create table to pansky;
Grant succeeded.
SQL> grant select on dba_data_files to pansky;
Grant succeeded.
SQL> grant select on dba_free_space to pansky;
Grant succeeded.
2、以pansky用户创建tbs_usage表
create table tbs_usage
as
SELECT df.tablespace_name||"-"||(sysdate) tbs_timeid ,df.tablespace_name||"-"||(sysdate-1) ys_tbs_timeid,df.tablespace_name,
COUNT(*) datafile_count,
ROUND(SUM(df.BYTES) / 1048576) size_mb,
ROUND(SUM(free.BYTES) / 1048576, 2) free_mb,
ROUND(SUM(df.BYTES) / 1048576 - SUM(free.BYTES) / 1048576, 2) used_mb,
ROUND(MAX(free.maxbytes) / 1048576, 2) maxfree,
100 - ROUND(100.0 * SUM(free.BYTES) / SUM(df.BYTES), 2) pct_used,
ROUND(100.0 * SUM(free.BYTES) / SUM(df.BYTES), 2) pct_free,(sysdate) time
FROM dba_data_files df,
(SELECT tablespace_name,
file_id,
SUM(BYTES) BYTES,
MAX(BYTES) maxbytes
FROM dba_free_space
GROUP BY tablespace_name, file_id) free
WHERE df.tablespace_name = free.tablespace_name(+)
AND df.file_id = free.file_id(+)
GROUP BY df.tablespace_name
ORDER BY 8;
3、创建主键约束
alter table tbs_usage add constraint tbs_usage_pk_tbs_timeid primary key(tbs_timeid);
4、在crontab中运行每日7点30分更新数据库表空间信息的脚本update_tbs_info.sh
30 07 * * * /Oracle10g/update_tbs_info.sh
其中 update_tbs_info.sh脚本内容如下
#!/bin/ksh
#FileName: update_tbs_info.sh
#CreateDate:2011-10-09
#Discription:take the basic information to insert into the table tbs_usage
PATH=/usr/kerberos/bin:/usr/local/bin:/usr/bin:/bin:/usr/X11R6/bin:/home/oracle/bin:/home/ oracle/bin:/oracle10g/app/oracle/product/10.2.0/db_1/bin;export PATH
ORACLE_SID=zgscdb1;export ORACLE_SID
ORACLE_BASE=/oracle10g/app/oracle;export ORACLE_BASE
ORACLE_HOME=/oracle10g/app/oracle/product/10.2.0/db_1;export ORACLE_HOME
PATH=$ORACLE_HOME/bin:$PATH;export PATH
date >> /oracle10g/log/update_tbs_info.log
sqlplus pansky/pansky > /oracle10g/log/update_tbs_info.log 2>&1
insert into pansky.tbs_usage
SELECT df.tablespace_name||"-"||(sysdate) tb_timeid,df.tablespace_name||"-"||(sysdate-1) y s_tb_timeid,df.tablespace_name,
COUNT(*) datafile_count,
ROUND(SUM(df.BYTES) / 1048576) size_mb,
ROUND(SUM(free.BYTES) / 1048576, 2) free_mb,
ROUND(SUM(df.BYTES) / 1048576 - SUM(free.BYTES) / 1048576, 2) used_mb,
ROUND(MAX(free.maxbytes) / 1048576, 2) maxfree,
100 - ROUND(100.0 * SUM(free.BYTES) / SUM(df.BYTES), 2) pct_used,
ROUND(100.0 * SUM(free.BYTES) / SUM(df.BYTES), 2) pct_free,sysdate time
FROM dba_data_files df,
(SELECT tablespace_name,
file_id,
SUM(BYTES) BYTES,
MAX(BYTES) maxbytes
FROM dba_free_space
GROUP BY tablespace_name, file_id) free
WHERE df.tablespace_name = free.tablespace_name(+)
AND df.file_id = free.file_id(+)
GROUP BY df.tablespace_name
ORDER BY 8;
commit;
EOF
echo >> /oracle10g/log/update_tbs_info.log
4、查询数据库表空间使用情况的SQL,下例可查询出2011-10-08的表空间使用情况以及相较于2011-10-09日的表空间增长量(MB),并根据pct_used降序排列。
Set linesize 150
Col tablespace_name for a22
select a.tablespace_name,a.datafile_count,a.size_mb,a.free_mb,a.used_mb,a.maxfree,a.pct_used,a.pct_free,to_char(a.time,"yyyy-mm-dd hh24:mi") time,(a.USED_MB-b.USED_MB) increase_mb from pansky.tbs_usage a,pansky.tbs_usage b
where a.YS_TBs_TIMEid= b.TBs_TIMEid
and a.time>=to_date("2011-11-02","yyyy-mm-dd") and a.time

Stored procedures are precompiled SQL statements in MySQL for improving performance and simplifying complex operations. 1. Improve performance: After the first compilation, subsequent calls do not need to be recompiled. 2. Improve security: Restrict data table access through permission control. 3. Simplify complex operations: combine multiple SQL statements to simplify application layer logic.

The working principle of MySQL query cache is to store the results of SELECT query, and when the same query is executed again, the cached results are directly returned. 1) Query cache improves database reading performance and finds cached results through hash values. 2) Simple configuration, set query_cache_type and query_cache_size in MySQL configuration file. 3) Use the SQL_NO_CACHE keyword to disable the cache of specific queries. 4) In high-frequency update environments, query cache may cause performance bottlenecks and needs to be optimized for use through monitoring and adjustment of parameters.

The reasons why MySQL is widely used in various projects include: 1. High performance and scalability, supporting multiple storage engines; 2. Easy to use and maintain, simple configuration and rich tools; 3. Rich ecosystem, attracting a large number of community and third-party tool support; 4. Cross-platform support, suitable for multiple operating systems.

The steps for upgrading MySQL database include: 1. Backup the database, 2. Stop the current MySQL service, 3. Install the new version of MySQL, 4. Start the new version of MySQL service, 5. Recover the database. Compatibility issues are required during the upgrade process, and advanced tools such as PerconaToolkit can be used for testing and optimization.

MySQL backup policies include logical backup, physical backup, incremental backup, replication-based backup, and cloud backup. 1. Logical backup uses mysqldump to export database structure and data, which is suitable for small databases and version migrations. 2. Physical backups are fast and comprehensive by copying data files, but require database consistency. 3. Incremental backup uses binary logging to record changes, which is suitable for large databases. 4. Replication-based backup reduces the impact on the production system by backing up from the server. 5. Cloud backups such as AmazonRDS provide automation solutions, but costs and control need to be considered. When selecting a policy, database size, downtime tolerance, recovery time, and recovery point goals should be considered.

MySQLclusteringenhancesdatabaserobustnessandscalabilitybydistributingdataacrossmultiplenodes.ItusestheNDBenginefordatareplicationandfaulttolerance,ensuringhighavailability.Setupinvolvesconfiguringmanagement,data,andSQLnodes,withcarefulmonitoringandpe

Optimizing database schema design in MySQL can improve performance through the following steps: 1. Index optimization: Create indexes on common query columns, balancing the overhead of query and inserting updates. 2. Table structure optimization: Reduce data redundancy through normalization or anti-normalization and improve access efficiency. 3. Data type selection: Use appropriate data types, such as INT instead of VARCHAR, to reduce storage space. 4. Partitioning and sub-table: For large data volumes, use partitioning and sub-table to disperse data to improve query and maintenance efficiency.

TooptimizeMySQLperformance,followthesesteps:1)Implementproperindexingtospeedupqueries,2)UseEXPLAINtoanalyzeandoptimizequeryperformance,3)Adjustserverconfigurationsettingslikeinnodb_buffer_pool_sizeandmax_connections,4)Usepartitioningforlargetablestoi


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

SAP NetWeaver Server Adapter for Eclipse
Integrate Eclipse with SAP NetWeaver application server.

MantisBT
Mantis is an easy-to-deploy web-based defect tracking tool designed to aid in product defect tracking. It requires PHP, MySQL and a web server. Check out our demo and hosting services.

SublimeText3 Chinese version
Chinese version, very easy to use

Dreamweaver CS6
Visual web development tools

Atom editor mac version download
The most popular open source editor
