这里我们并没有指定连接的条件,实际上oracle为我们自作主张的将,dave表中的id和name字段与bl表中的id和name字段进行了连接。也
Oracle 表之间的连接分为三种:
1. 内连接(自然连接)
2. 外连接
(1)左外连接 (左边的表不加限制)
(2)右外连接(右边的表不加限制)
(3)全外连接(左右两表都不加限制)
3. 自连接(同一张表内的连接)
SQL的标准语法:
select table1.column,table2.column
from table1 [inner | left | right | full ] join table2 on table1.column1 = table2.column2;
inner join 表示内连接;
left join表示左外连接;
right join表示右外连接;
full join表示完全外连接;
on子句 用于指定连接条件。
注意:
如果使用from子句指定内、外连接,则必须要使用on子句指定连接条件;
如果使用(+)操作符指定外连接,则必须使用where子句指定连接条件。
一. 内连接(Inner Join/Join)
1.1 Inner Join
Inner join逻辑运算符返回满足第一个(顶端)输入与第二个(底端)输入联接的每一行。这个和用select查询多表是一样的效果,,所以内连接用的很少。
还有一点要说明的就是Join 默认就是inner join。 所以我们在写内连接的时候可以省略inner 这个关键字。
1.2 下面举例来说明内连接:
1.2.1 先创建2张测试表并插入数据:
SQL> select * from dave;
ID NAME
---------- ----------
1 dave
2 bl
1 bl
2 dave
SQL> select * from bl;
ID NAME
---------- ----------
1 dave
2 bl
1.2.3 用内链接进行查询:
SQL> Select a.id,a.name,b.name from dave a inner join bl b on a.id=b.id; -- 标准写法
ID NAME NAME
---------- ---------- ----------
1 dave dave
2 bl bl
1 bl dave
2 dave bl
SQL> Select a.id,a.name,b.name from dave a join bl b on a.id=b.id; -- 这里省略了inner 关键字
ID NAME NAME
---------- ---------- ----------
1 dave dave
2 bl bl
1 bl dave
2 dave bl
SQL> Select a.id,a.name,b.name from dave a,bl b where a.id=b.id; -- select 多表查询
ID NAME NAME
---------- ---------- ----------
1 dave dave
2 bl bl
1 bl dave
2 dave bl
从这三个SQL 的结果我们也可以看出,他们的作用是一样的。
1.3 自然连接(Natural join)
自然连接是在两张表中寻找那些数据类型和列名都相同的字段,然后自动地将他们连接起来,并返回所有符合条件按的结果。
先看一下自然连接的例子:
SQL> Select id,name from dave a natural join bl b;
ID NAME
---------- ----------
1 dave
2 bl
这里我们并没有指定连接的条件,实际上oracle为我们自作主张的将,dave表中的id和name字段与bl表中的id和name字段进行了连接。也就是实际上相当于
SQL> Select dave.id,bl.name From dave join bl on dave.id = bl.id and dave.name=bl.name;
ID NAME
---------- ----------
1 dave
2 bl
因此,我们也可以将自然连接理解为内连接的一种。
有关自然连接的一些注意事项:
(1).如果做自然连接的两个表的有多个字段都满足有相同名称个类型,那么他们会被作为自然连接的条件。
(2).如果自然连接的两个表仅是字段名称相同,但数据类型不同,那么将会返回一个错误。

MySQL index cardinality has a significant impact on query performance: 1. High cardinality index can more effectively narrow the data range and improve query efficiency; 2. Low cardinality index may lead to full table scanning and reduce query performance; 3. In joint index, high cardinality sequences should be placed in front to optimize query.

The MySQL learning path includes basic knowledge, core concepts, usage examples, and optimization techniques. 1) Understand basic concepts such as tables, rows, columns, and SQL queries. 2) Learn the definition, working principles and advantages of MySQL. 3) Master basic CRUD operations and advanced usage, such as indexes and stored procedures. 4) Familiar with common error debugging and performance optimization suggestions, such as rational use of indexes and optimization queries. Through these steps, you will have a full grasp of the use and optimization of MySQL.

MySQL's real-world applications include basic database design and complex query optimization. 1) Basic usage: used to store and manage user data, such as inserting, querying, updating and deleting user information. 2) Advanced usage: Handle complex business logic, such as order and inventory management of e-commerce platforms. 3) Performance optimization: Improve performance by rationally using indexes, partition tables and query caches.

SQL commands in MySQL can be divided into categories such as DDL, DML, DQL, DCL, etc., and are used to create, modify, delete databases and tables, insert, update, delete data, and perform complex query operations. 1. Basic usage includes CREATETABLE creation table, INSERTINTO insert data, and SELECT query data. 2. Advanced usage involves JOIN for table joins, subqueries and GROUPBY for data aggregation. 3. Common errors such as syntax errors, data type mismatch and permission problems can be debugged through syntax checking, data type conversion and permission management. 4. Performance optimization suggestions include using indexes, avoiding full table scanning, optimizing JOIN operations and using transactions to ensure data consistency.

InnoDB achieves atomicity through undolog, consistency and isolation through locking mechanism and MVCC, and persistence through redolog. 1) Atomicity: Use undolog to record the original data to ensure that the transaction can be rolled back. 2) Consistency: Ensure the data consistency through row-level locking and MVCC. 3) Isolation: Supports multiple isolation levels, and REPEATABLEREAD is used by default. 4) Persistence: Use redolog to record modifications to ensure that data is saved for a long time.

MySQL's position in databases and programming is very important. It is an open source relational database management system that is widely used in various application scenarios. 1) MySQL provides efficient data storage, organization and retrieval functions, supporting Web, mobile and enterprise-level systems. 2) It uses a client-server architecture, supports multiple storage engines and index optimization. 3) Basic usages include creating tables and inserting data, and advanced usages involve multi-table JOINs and complex queries. 4) Frequently asked questions such as SQL syntax errors and performance issues can be debugged through the EXPLAIN command and slow query log. 5) Performance optimization methods include rational use of indexes, optimized query and use of caches. Best practices include using transactions and PreparedStatemen

MySQL is suitable for small and large enterprises. 1) Small businesses can use MySQL for basic data management, such as storing customer information. 2) Large enterprises can use MySQL to process massive data and complex business logic to optimize query performance and transaction processing.

InnoDB effectively prevents phantom reading through Next-KeyLocking mechanism. 1) Next-KeyLocking combines row lock and gap lock to lock records and their gaps to prevent new records from being inserted. 2) In practical applications, by optimizing query and adjusting isolation levels, lock competition can be reduced and concurrency performance can be improved.


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

Dreamweaver Mac version
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

SublimeText3 Linux new version
SublimeText3 Linux latest version

WebStorm Mac version
Useful JavaScript development tools

SecLists
SecLists is the ultimate security tester's companion. It is a collection of various types of lists that are frequently used during security assessments, all in one place. SecLists helps make security testing more efficient and productive by conveniently providing all the lists a security tester might need. List types include usernames, passwords, URLs, fuzzing payloads, sensitive data patterns, web shells, and more. The tester can simply pull this repository onto a new test machine and he will have access to every type of list he needs.