search
HomeDatabaseMysql TutorialOracle递归查询的原理

以start with ename =

在Oracle 10g下,来到scott用户下,分别以层次 1,2,3,4上的节点做实验:
 
当start with是根节点(level=1),要查其子节点,connect by pump和emp都是被扫描4次(总的层次)。
 
当start with是根节点(level=2),要查其子节点,,connect by pump和emp被扫描3次。
 
当start with是根节点(level=3),要查其子节点,connect by pump和emp被扫描2次。

当start with是根节点(level=4),要查其子节点,connect by pump和emp被扫描1次。

注意的是:leve=2,level=3不是叶子节点,如果是叶子节点,那connect by pump和emp只扫描一次。
 
  Operation            Name    Starts
 
  FILTER             
    TABLE ACCESS FULL    EMP        1
  HASH JOIN         
    CONNECT BY PUMP                  4
    TABLE ACCESS FULL    EMP        4

我来解读上面的执行计划,以start with ename = 'KING'为例,显示对EMP通过"ENAME"='KING'过滤找到节点作为根节点(集合A),通过集合A到下一级所有满足条件的节点(集合B),通过集合B再到下一级所有满足条件的节点(集合C),树有几级就CONNECT BY PUMP几次。

Oracle 函数中游标及递归的应用

Oracle递归函数

Oracle 递归查询

Oracle递归START WITH...CONNECT BY PRIOR子句用法

Oracle 使用递归的性能提示

Oracle递归查询(start with)
 
SQL> set pagesize 100
 SQL> --根节点 level=1
 SQL> select e.empno, e.ename, e.mgr, e.deptno,level
      from emp e
      start with ename = 'KING'
    connect by prior empno = mgr;
 
    EMPNO ENAME            MGR    DEPTNO      LEVEL
 ---------- ---------- ---------- ---------- ----------
      7839 KING                          10          1
      7566 JONES            7839        20          2
      7788 SCOTT            7566        20          3
      7876 ADAMS            7788        20          4
      7902 FORD            7566        20          3
      7369 SMITH            7902        20          4
      7698 BLAKE            7839        30          2
      7499 ALLEN            7698        30          3
      7521 WARD            7698        30          3
      7654 MARTIN          7698        30          3
      7844 TURNER          7698        30          3
      7900 JAMES            7698        30          3
      7782 CLARK            7839        10          2
      7934 MILLER          7782        10          3
 已选择14行。
 SQL> select * from table(dbms_xplan.display_cursor(null,null,'allstats last'));
 PLAN_TABLE_OUTPUT
 -----------------------------------------------------------------------------------------------------------------------
 ----------------------------------------------------------------------------------------------------
 SQL_ID  6as71p9t5arg3, child number 0
 -------------------------------------
 select e.empno, e.ename, e.mgr, e.deptno,level  from emp e  start with ename = 'KING' connect by prior empno
 = mgr
 Plan hash value: 3364448299
 -----------------------------------------------------------------------------------------------------------------------
 | Id  | Operation                | Name | Starts | E-Rows | A-Rows |  A-Time  | Buffers |  OMem |  1Mem | Used-Mem |
 -----------------------------------------------------------------------------------------------------------------------
 |*  1 |  CONNECT BY WITH FILTERING|      |      1 |        |    14 |00:00:00.01 |      35 |  9216 |  9216 | 8192  (0)|
 |*  2 |  FILTER                  |      |      1 |        |      1 |00:00:00.01 |      7 |      |    |            |
 |  3 |    TABLE ACCESS FULL      | EMP  |      1 |    14 |    14 |00:00:00.01 |      7 |      |    |            |
 |*  4 |  HASH JOIN              |      |      4 |        |    13 |00:00:00.01 |      28 |  1036K|  1036K|  776K (0)|
 |  5 |    CONNECT BY PUMP        |      |      4 |        |    14 |00:00:00.01 |      0 |      |    |            |
 |  6 |    TABLE ACCESS FULL      | EMP  |      4 |    14 |    56 |00:00:00.01 |      28 |      |    |            |
 |  7 |  TABLE ACCESS FULL      | EMP  |      0 |    14 |      0 |00:00:00.01 |      0 |      |    |            |
 -----------------------------------------------------------------------------------------------------------------------
 Predicate Information (identified by operation id):
 ---------------------------------------------------
    1 - filter("ENAME"='KING')
    2 - filter("ENAME"='KING')
    4 - access("MGR"=NULL)
 
SQL> --level=2
 SQL> select e.empno, e.ename, e.mgr, e.deptno,level
      from emp e
      start with ename = 'JONES'
    connect by prior empno = mgr;
      EMPNO ENAME            MGR    DEPTNO      LEVEL
 ---------- ---------- ---------- ---------- ----------
      7566 JONES            7839        20          1
      7788 SCOTT            7566        20          2
      7876 ADAMS            7788        20          3
      7902 FORD            7566        20          2
      7369 SMITH            7902        20          3
 SQL> select * from table(dbms_xplan.display_cursor(null,null,'allstats last'));
 PLAN_TABLE_OUTPUT
 ------------------------------------------------------------------------------------------------------------------------
 SQL_ID  2bcjwvmbyg7a5, child number 1
 -------------------------------------
 select e.empno, e.ename, e.mgr, e.deptno,level  from emp e  start with ename = 'JONES' connect by prior empno
 = mgr
 Plan hash value: 3364448299
 -----------------------------------------------------------------------------------------------------------------------
 | Id  | Operation                | Name | Starts | E-Rows | A-Rows |  A-Time  | Buffers |  OMem |  1Mem | Used-Mem |
 -----------------------------------------------------------------------------------------------------------------------
 |*  1 |  CONNECT BY WITH FILTERING|      |      1 |        |      5 |00:00:00.01 |      28 |  9216 |  9216 | 8192  (0)|
 |*  2 |  FILTER                  |      |      1 |        |      1 |00:00:00.01 |      7 |      |    |            |
 |  3 |    TABLE ACCESS FULL      | EMP  |      1 |    14 |    14 |00:00:00.01 |      7 |      |    |            |
 |*  4 |  HASH JOIN              |      |      3 |        |      4 |00:00:00.01 |      21 |  1036K|  1036K|  404K (0)|
 |  5 |    CONNECT BY PUMP        |      |      3 |        |      5 |00:00:00.01 |      0 |      |    |            |
 |  6 |    TABLE ACCESS FULL      | EMP  |      3 |    14 |    42 |00:00:00.01 |      21 |      |    |            |
 |  7 |  TABLE ACCESS FULL      | EMP  |      0 |    14 |      0 |00:00:00.01 |      0 |      |    |            |
 -----------------------------------------------------------------------------------------------------------------------
 Predicate Information (identified by operation id):
 ---------------------------------------------------
    1 - filter("ENAME"='JONES')
    2 - filter("ENAME"='JONES')
    4 - access("MGR"=NULL)
 
SQL> --level=3
 SQL> select e.empno, e.ename, e.mgr, e.deptno,level
      from emp e
      start with ename = 'SCOTT'
    connect by prior empno = mgr;
      EMPNO ENAME            MGR    DEPTNO      LEVEL
 ---------- ---------- ---------- ---------- ----------
      7788 SCOTT            7566        20          1
      7876 ADAMS            7788        20          2
 
SQL> select * from table(dbms_xplan.display_cursor(null,null,'allstats last'));
 
PLAN_TABLE_OUTPUT
 -----------------------------------------------------------------------------------------------------------------------
 SQL_ID  fqf7r75c9atqv, child number 0
 -------------------------------------
 select e.empno, e.ename, e.mgr, e.deptno,level  from emp e  start with ename = 'SCOTT' connect by prior empno
 = mgr
 Plan hash value: 3364448299
 -----------------------------------------------------------------------------------------------------------------------
 | Id  | Operation                | Name | Starts | E-Rows | A-Rows |  A-Time  | Buffers |  OMem |  1Mem | Used-Mem |
 -----------------------------------------------------------------------------------------------------------------------
 |*  1 |  CONNECT BY WITH FILTERING|      |      1 |        |      2 |00:00:00.01 |      21 |  9216 |  9216 | 8192  (0)|
 |*  2 |  FILTER                  |      |      1 |        |      1 |00:00:00.01 |      7 |      |    |            |
 |  3 |    TABLE ACCESS FULL      | EMP  |      1 |    14 |    14 |00:00:00.01 |      7 |      |    |            |
 |*  4 |  HASH JOIN              |      |      2 |        |      1 |00:00:00.01 |      14 |  1036K|  1036K|  282K (0)|
 |  5 |    CONNECT BY PUMP        |      |      2 |        |      2 |00:00:00.01 |      0 |      |    |            |
 |  6 |    TABLE ACCESS FULL      | EMP  |      2 |    14 |    28 |00:00:00.01 |      14 |      |    |            |
 |  7 |  TABLE ACCESS FULL      | EMP  |      0 |    14 |      0 |00:00:00.01 |      0 |      |    |            |
 -----------------------------------------------------------------------------------------------------------------------
 Predicate Information (identified by operation id):
 ---------------------------------------------------
    1 - filter("ENAME"='SCOTT')
    2 - filter("ENAME"='SCOTT')
    4 - access("MGR"=NULL)
 

Statement
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn
MySQL: BLOB and other no-sql storage, what are the differences?MySQL: BLOB and other no-sql storage, what are the differences?May 13, 2025 am 12:14 AM

MySQL'sBLOBissuitableforstoringbinarydatawithinarelationaldatabase,whileNoSQLoptionslikeMongoDB,Redis,andCassandraofferflexible,scalablesolutionsforunstructureddata.BLOBissimplerbutcanslowdownperformancewithlargedata;NoSQLprovidesbetterscalabilityand

MySQL Add User: Syntax, Options, and Security Best PracticesMySQL Add User: Syntax, Options, and Security Best PracticesMay 13, 2025 am 12:12 AM

ToaddauserinMySQL,use:CREATEUSER'username'@'host'IDENTIFIEDBY'password';Here'showtodoitsecurely:1)Choosethehostcarefullytocontrolaccess.2)SetresourcelimitswithoptionslikeMAX_QUERIES_PER_HOUR.3)Usestrong,uniquepasswords.4)EnforceSSL/TLSconnectionswith

MySQL: How to avoid String Data Types common mistakes?MySQL: How to avoid String Data Types common mistakes?May 13, 2025 am 12:09 AM

ToavoidcommonmistakeswithstringdatatypesinMySQL,understandstringtypenuances,choosetherighttype,andmanageencodingandcollationsettingseffectively.1)UseCHARforfixed-lengthstrings,VARCHARforvariable-length,andTEXT/BLOBforlargerdata.2)Setcorrectcharacters

MySQL: String Data Types and ENUMs?MySQL: String Data Types and ENUMs?May 13, 2025 am 12:05 AM

MySQloffersechar, Varchar, text, Anddenumforstringdata.usecharforfixed-Lengthstrings, VarcharerForvariable-Length, text forlarger text, AndenumforenforcingdataAntegritywithaetofvalues.

MySQL BLOB: how to optimize BLOBs requestsMySQL BLOB: how to optimize BLOBs requestsMay 13, 2025 am 12:03 AM

Optimizing MySQLBLOB requests can be done through the following strategies: 1. Reduce the frequency of BLOB query, use independent requests or delay loading; 2. Select the appropriate BLOB type (such as TINYBLOB); 3. Separate the BLOB data into separate tables; 4. Compress the BLOB data at the application layer; 5. Index the BLOB metadata. These methods can effectively improve performance by combining monitoring, caching and data sharding in actual applications.

Adding Users to MySQL: The Complete TutorialAdding Users to MySQL: The Complete TutorialMay 12, 2025 am 12:14 AM

Mastering the method of adding MySQL users is crucial for database administrators and developers because it ensures the security and access control of the database. 1) Create a new user using the CREATEUSER command, 2) Assign permissions through the GRANT command, 3) Use FLUSHPRIVILEGES to ensure permissions take effect, 4) Regularly audit and clean user accounts to maintain performance and security.

Mastering MySQL String Data Types: VARCHAR vs. TEXT vs. CHARMastering MySQL String Data Types: VARCHAR vs. TEXT vs. CHARMay 12, 2025 am 12:12 AM

ChooseCHARforfixed-lengthdata,VARCHARforvariable-lengthdata,andTEXTforlargetextfields.1)CHARisefficientforconsistent-lengthdatalikecodes.2)VARCHARsuitsvariable-lengthdatalikenames,balancingflexibilityandperformance.3)TEXTisidealforlargetextslikeartic

MySQL: String Data Types and Indexing: Best PracticesMySQL: String Data Types and Indexing: Best PracticesMay 12, 2025 am 12:11 AM

Best practices for handling string data types and indexes in MySQL include: 1) Selecting the appropriate string type, such as CHAR for fixed length, VARCHAR for variable length, and TEXT for large text; 2) Be cautious in indexing, avoid over-indexing, and create indexes for common queries; 3) Use prefix indexes and full-text indexes to optimize long string searches; 4) Regularly monitor and optimize indexes to keep indexes small and efficient. Through these methods, we can balance read and write performance and improve database efficiency.

See all articles

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

Video Face Swap

Video Face Swap

Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Dreamweaver Mac version

Dreamweaver Mac version

Visual web development tools

SublimeText3 Mac version

SublimeText3 Mac version

God-level code editing software (SublimeText3)

EditPlus Chinese cracked version

EditPlus Chinese cracked version

Small size, syntax highlighting, does not support code prompt function

MinGW - Minimalist GNU for Windows

MinGW - Minimalist GNU for Windows

This project is in the process of being migrated to osdn.net/projects/mingw, you can continue to follow us there. MinGW: A native Windows port of the GNU Compiler Collection (GCC), freely distributable import libraries and header files for building native Windows applications; includes extensions to the MSVC runtime to support C99 functionality. All MinGW software can run on 64-bit Windows platforms.

SecLists

SecLists

SecLists is the ultimate security tester's companion. It is a collection of various types of lists that are frequently used during security assessments, all in one place. SecLists helps make security testing more efficient and productive by conveniently providing all the lists a security tester might need. List types include usernames, passwords, URLs, fuzzing payloads, sensitive data patterns, web shells, and more. The tester can simply pull this repository onto a new test machine and he will have access to every type of list he needs.