Home >Database >Mysql Tutorial >Sqoop1.4.4 实现将 Oracle10g 中的增量数据导入 Hive0.13.1 ,并更新Hive中的主表

Sqoop1.4.4 实现将 Oracle10g 中的增量数据导入 Hive0.13.1 ,并更新Hive中的主表

WBOYWBOYWBOYWBOYWBOYWBOYWBOYWBOYWBOYWBOYWBOYWBOYWB
WBOYWBOYWBOYWBOYWBOYWBOYWBOYWBOYWBOYWBOYWBOYWBOYWBOriginal
2016-06-07 16:44:011071browse

将Oracle中的业务基础表增量数据导入Hive中,与当前的全量表合并为最新的全量表。通过Sqoop将Oracle中表的导入Hive,模拟全量表和

需求

将Oracle中的业务基础表增量数据导入Hive中,与当前的全量表合并为最新的全量表。

设计

涉及的三张表:

 

步骤:

  • 通过Sqoop将Oracle中的表导入Hive,模拟全量表和增量表
  • 通过Hive将“全量表+增量表”合并为“更新后的全量表”,覆盖当前的全量表
  • 步骤1:通过Sqoop将Oracle中表的导入Hive,模拟全量表和增量表

    为了模拟场景,需要一张全量表,和一张增量表,由于数据源有限,所以两个表都来自Oracle中的OMP_SERVICE,全量表包含所有数据,,在Hive中名称叫service_all,增量表包含部分时间段数据,在Hive中名称叫service_tmp。

    (1)全量表导入:导出所有数据,只要部分字段,导入到Hive指定表里

    为实现导入Hive功能,需要先配置HCatalog(HCatalog是Hive子模块)的环境变量,/etc/profile中新增:

    export HCAT_HOME=/home/fulong/Hive/apache-hive-0.13.1-bin/hcatalog

     

    执行以下命令导入数据:

    fulong@FBI006:~/Sqoop/sqoop-1.4.4/bin$ ./sqoop import \

    > --connect jdbc:oracle:thin:@192.168.0.147:1521:ORCLGBK  --username SP --password fulong \

    > --table OMP_SERVICE \

    > --columns "SERVICE_CODE,SERVICE_NAME,SERVICE_PROCESS,CREATE_TIME,ENABLE_ORG,ENABLE_PLATFORM,IF_DEL" \

    > --hive-import --hive-table SERVICE_ALL

     

    注意:用户名必须大写

     

    (2)增量表导入:只导出所需时间范围内的数据,只要部分字段,导入到Hive指定表里

    使用以下命令导入数据:

    fulong@FBI006:~/Sqoop/sqoop-1.4.4/bin$ ./sqoop import \

    > --connect jdbc:oracle:thin:@192.168.0.147:1521:ORCLGBK  --username SP --password fulong \

    > --table OMP_SERVICE \

    > --columns "SERVICE_CODE,SERVICE_NAME,SERVICE_PROCESS,CREATE_TIME,ENABLE_ORG,ENABLE_PLATFORM,IF_DEL" \

    > --where "CREATE_TIME > to_date('2012/12/4 17:00:00','yyyy-mm-dd hh24:mi:ss') and CREATE_TIME

    > --hive-import --hive-overwrite --hive-table SERVICE_TMP

     

    注意:

  • 由于使用了--hive-overwrite参数,所以该语句可反复执行,往service_tmp表中覆盖插入最新的增量数据;
  • Sqoop还支持使用复杂Sql语句查询数据导入,相亲参见的“7.2.3.Free-form Query Imports”章节
  • (3)验证导入结果:列出所有表,统计行数,查看表结构

    hive> show tables;

    OK

    searchlog

    searchlog_tmp

    service_all

    service_tmp

    Time taken: 0.04 seconds, Fetched: 4 row(s)

    hive> select count(*) from service_all;

    Total jobs = 1

    Launching Job 1 out of 1

    Number of reduce tasks determined at compile time: 1

    In order to change the average load for a reducer (in bytes):

      set hive.exec.reducers.bytes.per.reducer=

    In order to limit the maximum number of reducers:

      set hive.exec.reducers.max=

    In order to set a constant number of reducers:

      set mapreduce.job.reduces=

    Starting Job = job_1407233914535_0013, Tracking URL = :8088/proxy/application_1407233914535_0013/

    Kill Command = /home/fulong/Hadoop/hadoop-2.2.0/bin/hadoop job  -kill job_1407233914535_0013

    Hadoop job information for Stage-1: number of mappers: 3; number of reducers: 1

    2014-08-21 16:51:47,389 Stage-1 map = 0%,  reduce = 0%

    2014-08-21 16:51:59,816 Stage-1 map = 33%,  reduce = 0%, Cumulative CPU 1.36 sec

    2014-08-21 16:52:01,996 Stage-1 map = 67%,  reduce = 0%, Cumulative CPU 2.45 sec

    2014-08-21 16:52:07,877 Stage-1 map = 100%,  reduce = 0%, Cumulative CPU 3.96 sec

    2014-08-21 16:52:17,639 Stage-1 map = 100%,  reduce = 100%, Cumulative CPU 5.29 sec

    MapReduce Total cumulative CPU time: 5 seconds 290 msec

    Ended Job = job_1407233914535_0013

    MapReduce Jobs Launched:

    Job 0: Map: 3  Reduce: 1   Cumulative CPU: 5.46 sec   HDFS Read: 687141 HDFS Write: 5 SUCCESS

    Total MapReduce CPU Time Spent: 5 seconds 460 msec

    OK

    6803

    Time taken: 59.386 seconds, Fetched: 1 row(s)

    hive> select count(*) from service_tmp;

    Total jobs = 1

    Launching Job 1 out of 1

    Number of reduce tasks determined at compile time: 1

    In order to change the average load for a reducer (in bytes):

      set hive.exec.reducers.bytes.per.reducer=

    In order to limit the maximum number of reducers:

      set hive.exec.reducers.max=

    In order to set a constant number of reducers:

      set mapreduce.job.reduces=

    Starting Job = job_1407233914535_0014, Tracking URL = :8088/proxy/application_1407233914535_0014/

    Kill Command = /home/fulong/Hadoop/hadoop-2.2.0/bin/hadoop job  -kill job_1407233914535_0014

    Hadoop job information for Stage-1: number of mappers: 3; number of reducers: 1

    2014-08-21 16:53:03,951 Stage-1 map = 0%,  reduce = 0%

    2014-08-21 16:53:15,189 Stage-1 map = 67%,  reduce = 0%, Cumulative CPU 2.17 sec

    2014-08-21 16:53:16,236 Stage-1 map = 100%,  reduce = 0%, Cumulative CPU 3.38 sec

    2014-08-21 16:53:57,935 Stage-1 map = 100%,  reduce = 22%, Cumulative CPU 3.78 sec

    2014-08-21 16:54:01,811 Stage-1 map = 100%,  reduce = 100%, Cumulative CPU 5.34 sec

    MapReduce Total cumulative CPU time: 5 seconds 340 msec

    Ended Job = job_1407233914535_0014

    MapReduce Jobs Launched:

    Job 0: Map: 3  Reduce: 1   Cumulative CPU: 5.66 sec   HDFS Read: 4720 HDFS Write: 3 SUCCESS

    Total MapReduce CPU Time Spent: 5 seconds 660 msec

    OK

    13

    Time taken: 75.856 seconds, Fetched: 1 row(s)

    hive> describe service_all;

    OK

    service_code            string

    service_name            string

    service_process         string

    create_time             string

    enable_org              string

    enable_platform         string

    if_del                  string

    Time taken: 0.169 seconds, Fetched: 7 row(s)

    hive> describe service_tmp;

    OK

    service_code            string

    service_name            string

    service_process         string

    create_time             string

    enable_org              string

    enable_platform         string

    if_del                  string

    Time taken: 0.117 seconds, Fetched: 7 row(s)

    合并新表的逻辑如下:

  • 整个tmp表进入最终表中
  • all表的数据中不包含在tmp表service_code范围内的数据全部进入新表
  • 执行以下sql语句可以合并得到更新后的全量表:

    Statement:
    The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn