MongoDB单机主从模式 1:启动master [linuxidc@linuxidc04 mongodb-linux-x86_64-2.6.4]$ mongod --dbpath /home/linuxidc/mongo
MongoDB单机主从模式
1:启动master
[linuxidc@linuxidc04 mongodb-linux-x86_64-2.6.4]$ mongod --dbpath /home/linuxidc/mongodb-linux-x86_64-2.6.4/data --port 10000 --master
2014-09-05T15:11:50.115+0800 [initandlisten] MongoDB starting : pid=23623 port=10000 dbpath=/home/linuxidc/mongodb-linux-x86_64-2.6.4/data master=1 64-bit host=linuxidc04
2014-09-05T15:11:50.116+0800 [initandlisten] db version v2.6.4
2014-09-05T15:11:50.116+0800 [initandlisten] git version: 3a830be0eb92d772aa855ebb711ac91d658ee910
2014-09-05T15:11:50.117+0800 [initandlisten] build info: Linux build7.nj1.10gen.cc 2.6.32-431.3.1.el6.x86_64 #1 SMP Fri Jan 3 21:39:27 UTC 2014 x86_64 BOOST_LIB_VERSION=1_49
2014-09-05T15:11:50.117+0800 [initandlisten] allocator: tcmalloc
2014-09-05T15:11:50.117+0800 [initandlisten] options: { master: true, net: { port: 10000 }, storage: { dbPath: "/home/linuxidc/mongodb-linux-x86_64-2.6.4/data" } }
2014-09-05T15:11:50.127+0800 [initandlisten] journal dir=/home/linuxidc/mongodb-linux-x86_64-2.6.4/data/journal
2014-09-05T15:11:50.127+0800 [initandlisten] recover : no journal files present, no recovery needed
2014-09-05T15:11:50.298+0800 [initandlisten] waiting for connections on port 10000
2:启动slave
[linuxidc@linuxidc04 ~]$ mongod --dbpath /home/linuxidc/mongodb-linux-x86_64-2.6.4/data2 --port 10001 --slave --source localhost:10000
2014-09-05T15:12:48.411+0800 [initandlisten] MongoDB starting : pid=23636 port=10001 dbpath=/home/linuxidc/mongodb-linux-x86_64-2.6.4/data2 slave=1 64-bit host=linuxidc04
2014-09-05T15:12:48.412+0800 [initandlisten] db version v2.6.4
2014-09-05T15:12:48.412+0800 [initandlisten] git version: 3a830be0eb92d772aa855ebb711ac91d658ee910
2014-09-05T15:12:48.412+0800 [initandlisten] build info: Linux build7.nj1.10gen.cc 2.6.32-431.3.1.el6.x86_64 #1 SMP Fri Jan 3 21:39:27 UTC 2014 x86_64 BOOST_LIB_VERSION=1_49
2014-09-05T15:12:48.412+0800 [initandlisten] allocator: tcmalloc
2014-09-05T15:12:48.413+0800 [initandlisten] options: { net: { port: 10001 }, slave: true, source: "localhost:10000", storage: { dbPath: "/home/linuxidc/mongodb-linux-x86_64-2.6.4/data2" } }
2014-09-05T15:12:48.417+0800 [initandlisten] journal dir=/home/linuxidc/mongodb-linux-x86_64-2.6.4/data2/journal
2014-09-05T15:12:48.417+0800 [initandlisten] recover : no journal files present, no recovery needed
2014-09-05T15:12:48.434+0800 [initandlisten] waiting for connections on port 10001
2014-09-05T15:12:49.438+0800 [replslave] repl: syncing from host:localhost:10000
2014-09-05T15:13:48.454+0800 [clientcursormon] mem (MB) res:51 virt:584
2014-09-05T15:13:48.454+0800 [clientcursormon] mapped (incl journal view):320
2014-09-05T15:13:48.454+0800 [clientcursormon] connections:0
2014-09-05T15:14:04.315+0800 [replslave] repl: checkpoint applied 285 operations
2014-09-05T15:14:04.316+0800 [replslave] repl: syncedTo: Sep 5 15:13:54 540962b2:1
3:显示数据
[linuxidc@linuxidc04 ~]$ mongo localhost:10000
MongoDB shell version: 2.6.4
connecting to: localhost:10000/test
> db.master.find()
{ "_id" : ObjectId("540942bed89f094a5fbd9b5a"), "uid" : 1000 }
{ "_id" : ObjectId("540946bcd89f094a5fbd9b5b"), "uid" : 1001 }
{ "_id" : ObjectId("540956b7789903d8baf6b1b3"), "uid" : 1002 }
>
从
[linuxidc@linuxidc04 mongodb-linux-x86_64-2.6.4]$ mongo localhost:10001
MongoDB shell version: 2.6.4
connecting to: localhost:10001/test
> db.master.find()
{ "_id" : ObjectId("540942bed89f094a5fbd9b5a"), "uid" : 1000 }
{ "_id" : ObjectId("540946bcd89f094a5fbd9b5b"), "uid" : 1001 }
{ "_id" : ObjectId("540956b7789903d8baf6b1b3"), "uid" : 1002 }
4:主写数据
> db.master.insert({uid:1004})
WriteResult({ "nInserted" : 1 })
> db.master.find()
{ "_id" : ObjectId("540942bed89f094a5fbd9b5a"), "uid" : 1000 }
{ "_id" : ObjectId("540946bcd89f094a5fbd9b5b"), "uid" : 1001 }
{ "_id" : ObjectId("540956b7789903d8baf6b1b3"), "uid" : 1002 }
{ "_id" : ObjectId("5409638c0a6617467df195ec"), "uid" : 1004 }
>
从查询数据
[linuxidc@linuxidc04 ~]$ cd mongodb-linux-x86_64-2.6.4
[linuxidc@linuxidc04 mongodb-linux-x86_64-2.6.4]$ mongo localhost:10001
MongoDB shell version: 2.6.4
connecting to: localhost:10001/test
> db.master.find()
{ "_id" : ObjectId("540942bed89f094a5fbd9b5a"), "uid" : 1000 }
{ "_id" : ObjectId("540946bcd89f094a5fbd9b5b"), "uid" : 1001 }
{ "_id" : ObjectId("540956b7789903d8baf6b1b3"), "uid" : 1002 }
> db.master.find()
{ "_id" : ObjectId("540942bed89f094a5fbd9b5a"), "uid" : 1000 }
{ "_id" : ObjectId("540946bcd89f094a5fbd9b5b"), "uid" : 1001 }
{ "_id" : ObjectId("540956b7789903d8baf6b1b3"), "uid" : 1002 }
{ "_id" : ObjectId("5409638c0a6617467df195ec"), "uid" : 1004 }
>
--------------------------------------分割线 --------------------------------------
CentOS编译安装MongoDB
CentOS 编译安装 MongoDB与mongoDB的php扩展
CentOS 6 使用 yum 安装MongoDB及服务器端配置
Ubuntu 13.04下安装MongoDB2.4.3
MongoDB入门必读(概念与实战并重)
《MongoDB 权威指南》(MongoDB: The Definitive Guide)英文文字版[PDF]
--------------------------------------分割线 --------------------------------------
从机日志

Stored procedures are precompiled SQL statements in MySQL for improving performance and simplifying complex operations. 1. Improve performance: After the first compilation, subsequent calls do not need to be recompiled. 2. Improve security: Restrict data table access through permission control. 3. Simplify complex operations: combine multiple SQL statements to simplify application layer logic.

The working principle of MySQL query cache is to store the results of SELECT query, and when the same query is executed again, the cached results are directly returned. 1) Query cache improves database reading performance and finds cached results through hash values. 2) Simple configuration, set query_cache_type and query_cache_size in MySQL configuration file. 3) Use the SQL_NO_CACHE keyword to disable the cache of specific queries. 4) In high-frequency update environments, query cache may cause performance bottlenecks and needs to be optimized for use through monitoring and adjustment of parameters.

The reasons why MySQL is widely used in various projects include: 1. High performance and scalability, supporting multiple storage engines; 2. Easy to use and maintain, simple configuration and rich tools; 3. Rich ecosystem, attracting a large number of community and third-party tool support; 4. Cross-platform support, suitable for multiple operating systems.

The steps for upgrading MySQL database include: 1. Backup the database, 2. Stop the current MySQL service, 3. Install the new version of MySQL, 4. Start the new version of MySQL service, 5. Recover the database. Compatibility issues are required during the upgrade process, and advanced tools such as PerconaToolkit can be used for testing and optimization.

MySQL backup policies include logical backup, physical backup, incremental backup, replication-based backup, and cloud backup. 1. Logical backup uses mysqldump to export database structure and data, which is suitable for small databases and version migrations. 2. Physical backups are fast and comprehensive by copying data files, but require database consistency. 3. Incremental backup uses binary logging to record changes, which is suitable for large databases. 4. Replication-based backup reduces the impact on the production system by backing up from the server. 5. Cloud backups such as AmazonRDS provide automation solutions, but costs and control need to be considered. When selecting a policy, database size, downtime tolerance, recovery time, and recovery point goals should be considered.

MySQLclusteringenhancesdatabaserobustnessandscalabilitybydistributingdataacrossmultiplenodes.ItusestheNDBenginefordatareplicationandfaulttolerance,ensuringhighavailability.Setupinvolvesconfiguringmanagement,data,andSQLnodes,withcarefulmonitoringandpe

Optimizing database schema design in MySQL can improve performance through the following steps: 1. Index optimization: Create indexes on common query columns, balancing the overhead of query and inserting updates. 2. Table structure optimization: Reduce data redundancy through normalization or anti-normalization and improve access efficiency. 3. Data type selection: Use appropriate data types, such as INT instead of VARCHAR, to reduce storage space. 4. Partitioning and sub-table: For large data volumes, use partitioning and sub-table to disperse data to improve query and maintenance efficiency.

TooptimizeMySQLperformance,followthesesteps:1)Implementproperindexingtospeedupqueries,2)UseEXPLAINtoanalyzeandoptimizequeryperformance,3)Adjustserverconfigurationsettingslikeinnodb_buffer_pool_sizeandmax_connections,4)Usepartitioningforlargetablestoi


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

SublimeText3 Linux new version
SublimeText3 Linux latest version

WebStorm Mac version
Useful JavaScript development tools

Dreamweaver Mac version
Visual web development tools

SublimeText3 English version
Recommended: Win version, supports code prompts!

Zend Studio 13.0.1
Powerful PHP integrated development environment
