一 MySQL对于表达式的化简技术,支持常量传递这一技术,如下例:CREATE TABLE `t1` (`id1` int(11) NOT NULL DEFAULT
一 MySQL对于表达式的化简技术,支持常量传递这一技术,如下例:
CREATE TABLE `t1` (
`id1` int(11) NOT NULL DEFAULT '0',
`a1` int(11) DEFAULT NULL,
`b1` int(11) DEFAULT NULL,
PRIMARY KEY (`id1`)
) ENGINE=InnoDB DEFAULT CHARSET=latin1;
CREATE TABLE `t5` (
`id5` int(11) DEFAULT NULL,
`a5` int(11) DEFAULT NULL,
`b5` int(11) DEFAULT NULL,
UNIQUE KEY `id5` (`id5`)
) ENGINE=InnoDB DEFAULT CHARSET=latin1;
两表各插入一些数据.
对于条件”a1=a5 and a5=1”,被MySQL的优化器优化后,变为”(`xx`.`t5`.`a5` = 1) and (`xx`.`t1`.`a1` = 1)”, 这就是常量传递技术.
mysql> explain extended select * from t5, t1 where a1=a5 and a5=1;
+----+-------------+-------+------+---------------+------+---------+------+------+----------+----------------------------------------------------+
| id | select_type | table | type | possible_keys | key | key_len | ref | rows | filtered | Extra |
+----+-------------+-------+------+---------------+------+---------+------+------+----------+----------------------------------------------------+
| 1 | SIMPLE | t5 | ALL | NULL | NULL | NULL | NULL | 10 | 100.00 | Using where |
| 1 | SIMPLE | t1 | ALL | NULL | NULL | NULL | NULL | 9999 | 100.00 | Using where; Using join buffer (Block Nested Loop) |
+----+-------------+-------+------+---------------+------+---------+------+------+----------+----------------------------------------------------+
2 rows in set, 1 warning (0.00 sec)
mysql> show warnings;
/* select#1 */ select `xx`.`t5`.`id5` AS `id5`,`xx`.`t5`.`a5` AS `a5`,
`xx`.`t5`.`b5` AS `b5`,`xx`.`t1`.`id1` AS `id1`,`xx`.`t1`.`a1`AS `a1`,`xx`.`t1`.`b1` AS `b1`
from `xx`.`t5` join `xx`.`t1`
where ((`xx`.`t5`.`a5` = 1) and (`xx`.`t1`.`a1` = 1))
二 当条件表达式中存在主键的时候,情况会有些不同,如:
mysql> explain extended select * from t5, t1 where id1=id5 and id5=1;
+----+-------------+-------+-------+---------------+---------+---------+-------+------+----------+-------+
| id | select_type | table | type | possible_keys | key | key_len | ref | rows | filtered | Extra |
+----+-------------+-------+-------+---------------+---------+---------+-------+------+----------+-------+
| 1 | SIMPLE | t5 | const | id5 | id5 | 5 | const | 1 | 100.00 | NULL |
| 1 | SIMPLE | t1 | const | PRIMARY | PRIMARY | 4 | const | 1 | 100.00 | NULL |
+----+-------------+-------+-------+---------------+---------+---------+-------+------+----------+-------+
2 rows in set, 1 warning (0.00 sec)
mysql> show warnings;
/* select#1 */ select '1' AS `id5`,'1' AS `a5`,NULL AS `b5`,
'1' AS `id1`,'1' AS `a1`,NULL AS `b1`
from `xx`.`t5` join `xx`.`t1`
where 1
为什么会这样?
这是因为:
1 常量传递技术,使得MySQL的优化器认为”id1=id5 =1”
2 而id1和id5分别都是主键,所以t1和t5表,都被认为是”常量表”,所以执行计划中type的值是const. 也就是说,t1和t5表元组完全能够确定(即能够在优化阶段被直接读出而不用在执行阶段定位查找元组). 所以t1和t5表的连接操作就很简单了.
3 到了显示执行计划的阶段,这时就不难理解为什么成为了”where 1”. 因为元组已经找到,此时条件已经不在起作用. 结果为真的条件正好满足常量表的元组输出.
所以,如下的一个主键和一个非主键间发生常量传递的情况也就容易理解了.
mysql> explain extended select * from t5, t1 where id1=a5 and a5=1;
+----+-------------+-------+-------+---------------+---------+---------+-------+------+----------+-------------+
| id | select_type | table | type | possible_keys | key | key_len | ref | rows | filtered | Extra |
+----+-------------+-------+-------+---------------+---------+---------+-------+------+----------+-------------+
| 1 | SIMPLE | t1 | const | PRIMARY | PRIMARY | 4 | const | 1 | 100.00 | NULL |
| 1 | SIMPLE | t5 | ALL | NULL | NULL | NULL | NULL | 10 | 100.00 | Using where |
+----+-------------+-------+-------+---------------+---------+---------+-------+------+----------+-------------+
2 rows in set, 1 warning (0.00 sec)
mysql> show warnings;
/* select#1 */ select `xx`.`t5`.`id5` AS `id5`,`xx`.`t5`.`a5` AS `a5`,
`xx`.`t5`.`b5` AS `b5`,'1' AS `id1`,'1' AS `a1`,NULL AS `b1`
from `xx`.`t5` join `xx`.`t1`
where (`xx`.`t5`.`a5` = 1)
--------------------------------------分割线 --------------------------------------
Ubuntu 14.04下安装MySQL
《MySQL权威指南(原书第2版)》清晰中文扫描版 PDF
Ubuntu 14.04 LTS 安装 LNMP Nginx\PHP5 (PHP-FPM)\MySQL
Ubuntu 14.04下搭建MySQL主从服务器
Ubuntu 12.04 LTS 构建高可用分布式 MySQL 集群
Ubuntu 12.04下源代码安装MySQL5.6以及Python-MySQLdb
MySQL-5.5.38通用二进制安装
--------------------------------------分割线 --------------------------------------
本文永久更新链接地址:

InnoDBBufferPool reduces disk I/O by caching data and indexing pages, improving database performance. Its working principle includes: 1. Data reading: Read data from BufferPool; 2. Data writing: After modifying the data, write to BufferPool and refresh it to disk regularly; 3. Cache management: Use the LRU algorithm to manage cache pages; 4. Reading mechanism: Load adjacent data pages in advance. By sizing the BufferPool and using multiple instances, database performance can be optimized.

Compared with other programming languages, MySQL is mainly used to store and manage data, while other languages such as Python, Java, and C are used for logical processing and application development. MySQL is known for its high performance, scalability and cross-platform support, suitable for data management needs, while other languages have advantages in their respective fields such as data analytics, enterprise applications, and system programming.

MySQL is worth learning because it is a powerful open source database management system suitable for data storage, management and analysis. 1) MySQL is a relational database that uses SQL to operate data and is suitable for structured data management. 2) The SQL language is the key to interacting with MySQL and supports CRUD operations. 3) The working principle of MySQL includes client/server architecture, storage engine and query optimizer. 4) Basic usage includes creating databases and tables, and advanced usage involves joining tables using JOIN. 5) Common errors include syntax errors and permission issues, and debugging skills include checking syntax and using EXPLAIN commands. 6) Performance optimization involves the use of indexes, optimization of SQL statements and regular maintenance of databases.

MySQL is suitable for beginners to learn database skills. 1. Install MySQL server and client tools. 2. Understand basic SQL queries, such as SELECT. 3. Master data operations: create tables, insert, update, and delete data. 4. Learn advanced skills: subquery and window functions. 5. Debugging and optimization: Check syntax, use indexes, avoid SELECT*, and use LIMIT.

MySQL efficiently manages structured data through table structure and SQL query, and implements inter-table relationships through foreign keys. 1. Define the data format and type when creating a table. 2. Use foreign keys to establish relationships between tables. 3. Improve performance through indexing and query optimization. 4. Regularly backup and monitor databases to ensure data security and performance optimization.

MySQL is an open source relational database management system that is widely used in Web development. Its key features include: 1. Supports multiple storage engines, such as InnoDB and MyISAM, suitable for different scenarios; 2. Provides master-slave replication functions to facilitate load balancing and data backup; 3. Improve query efficiency through query optimization and index use.

SQL is used to interact with MySQL database to realize data addition, deletion, modification, inspection and database design. 1) SQL performs data operations through SELECT, INSERT, UPDATE, DELETE statements; 2) Use CREATE, ALTER, DROP statements for database design and management; 3) Complex queries and data analysis are implemented through SQL to improve business decision-making efficiency.

The basic operations of MySQL include creating databases, tables, and using SQL to perform CRUD operations on data. 1. Create a database: CREATEDATABASEmy_first_db; 2. Create a table: CREATETABLEbooks(idINTAUTO_INCREMENTPRIMARYKEY, titleVARCHAR(100)NOTNULL, authorVARCHAR(100)NOTNULL, published_yearINT); 3. Insert data: INSERTINTObooks(title, author, published_year)VA


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

SecLists
SecLists is the ultimate security tester's companion. It is a collection of various types of lists that are frequently used during security assessments, all in one place. SecLists helps make security testing more efficient and productive by conveniently providing all the lists a security tester might need. List types include usernames, passwords, URLs, fuzzing payloads, sensitive data patterns, web shells, and more. The tester can simply pull this repository onto a new test machine and he will have access to every type of list he needs.

EditPlus Chinese cracked version
Small size, syntax highlighting, does not support code prompt function

Zend Studio 13.0.1
Powerful PHP integrated development environment

SublimeText3 English version
Recommended: Win version, supports code prompts!

PhpStorm Mac version
The latest (2018.2.1) professional PHP integrated development tool