MySQL 5.6为什么关闭元数据统计信息自动更新统计信息收集源代码探索
问题描述:
MySQL 5.5.15 原sql如下:
select constraint_schema,table_name,constraint_name,constraint_type from information_schema.table_constraints where table_schema not in ('information_schema', 'mysql', 'test',‘performance_schema’);
不只是上面提到的table_constraints,information_schema库下的一下几个表,访问时候都会触发这个“顺手”操作。
information_schema.TABLES
information_schema.STATISTICS
information_schema.PARTITIONS
information_schema.KEY_COLUMN_USAGE
information_schema.TABLE_CONSTRAINTS
information_schema.REFERENTIAL_CONSTRAINTS
show table status . .
show index from ...
当innodb_stats_on_metadata=on 都会触发自动更新统计信息。
问题:
5.6 开始默认innodb_stats_on_metadata=off,why??? 答:为了防止自动更新统计信息在DB高峰时导致BP的swap;查询性能大幅度抖动。
没有定期更新统计信息了么??答:有啊,而且可以是持久化的。
我看到的MySQL 5.5.15 这个版本还是条件是====>
counter > 2000000000 || ((ib_int64_t)counter > 16 + table->stat_n_rows / 16)
下面做了对MySQL 收集统计信息做了扩展:
一.下面我们来看下对MySQL 5.5.36 的源代码的分析:
---------------------------------------------------------------------------
#通过更新统计信息stat_modified_counter,每个表都有这个表里来维护:
./storage/innobase/row/row0mysql.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
/*********************************************************************//**
Updates the table modification counter and calculates new estimates
for table and index statistics if necessary. */
UNIV_INLINE
void
row_update_statistics_if_needed(
/*============================*/
dict_table_t* table) /*!
{
ulint counter;
counter = table->stat_modified_counter;
table->stat_modified_counter = counter + 1;
if (DICT_TABLE_CHANGED_TOO_MUCH(table)) {
dict_update_statistics(
table,
FALSE, /* update even if stats are initialized */
TRUE /* only update if stats changed too much */);
}
}
/*********************************************************************/
规则:每一次DML操作导致1 行更新,stat_modified_counter加1,直到满足更新统计信息的条件,stat_modified_counter的值自动重置为0。
* 这样有个性能问题,若有多个线程同时检测到阈值,也即是并发调用会多次,,会导致dict_update_statistics函数多次的调用,浪费了系统资源。
解决方法:在dict_update_statistics{}函数对stat_modified_counter加锁,避免并发执行。
#统计新跟更新函数:dict_update_statistics
./storage/innobase/dict/dict0dict.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
/*********************************************************************//**
Calculates new estimates for table and index statistics. The statistics
are used in query optimization. */
UNIV_INTERN
void
dict_update_statistics(
/*===================*/
dict_table_t* table, /*!
ibool only_calc_if_missing_stats,/*!
update/recalc the stats if they have

Stored procedures are precompiled SQL statements in MySQL for improving performance and simplifying complex operations. 1. Improve performance: After the first compilation, subsequent calls do not need to be recompiled. 2. Improve security: Restrict data table access through permission control. 3. Simplify complex operations: combine multiple SQL statements to simplify application layer logic.

The working principle of MySQL query cache is to store the results of SELECT query, and when the same query is executed again, the cached results are directly returned. 1) Query cache improves database reading performance and finds cached results through hash values. 2) Simple configuration, set query_cache_type and query_cache_size in MySQL configuration file. 3) Use the SQL_NO_CACHE keyword to disable the cache of specific queries. 4) In high-frequency update environments, query cache may cause performance bottlenecks and needs to be optimized for use through monitoring and adjustment of parameters.

The reasons why MySQL is widely used in various projects include: 1. High performance and scalability, supporting multiple storage engines; 2. Easy to use and maintain, simple configuration and rich tools; 3. Rich ecosystem, attracting a large number of community and third-party tool support; 4. Cross-platform support, suitable for multiple operating systems.

The steps for upgrading MySQL database include: 1. Backup the database, 2. Stop the current MySQL service, 3. Install the new version of MySQL, 4. Start the new version of MySQL service, 5. Recover the database. Compatibility issues are required during the upgrade process, and advanced tools such as PerconaToolkit can be used for testing and optimization.

MySQL backup policies include logical backup, physical backup, incremental backup, replication-based backup, and cloud backup. 1. Logical backup uses mysqldump to export database structure and data, which is suitable for small databases and version migrations. 2. Physical backups are fast and comprehensive by copying data files, but require database consistency. 3. Incremental backup uses binary logging to record changes, which is suitable for large databases. 4. Replication-based backup reduces the impact on the production system by backing up from the server. 5. Cloud backups such as AmazonRDS provide automation solutions, but costs and control need to be considered. When selecting a policy, database size, downtime tolerance, recovery time, and recovery point goals should be considered.

MySQLclusteringenhancesdatabaserobustnessandscalabilitybydistributingdataacrossmultiplenodes.ItusestheNDBenginefordatareplicationandfaulttolerance,ensuringhighavailability.Setupinvolvesconfiguringmanagement,data,andSQLnodes,withcarefulmonitoringandpe

Optimizing database schema design in MySQL can improve performance through the following steps: 1. Index optimization: Create indexes on common query columns, balancing the overhead of query and inserting updates. 2. Table structure optimization: Reduce data redundancy through normalization or anti-normalization and improve access efficiency. 3. Data type selection: Use appropriate data types, such as INT instead of VARCHAR, to reduce storage space. 4. Partitioning and sub-table: For large data volumes, use partitioning and sub-table to disperse data to improve query and maintenance efficiency.

TooptimizeMySQLperformance,followthesesteps:1)Implementproperindexingtospeedupqueries,2)UseEXPLAINtoanalyzeandoptimizequeryperformance,3)Adjustserverconfigurationsettingslikeinnodb_buffer_pool_sizeandmax_connections,4)Usepartitioningforlargetablestoi


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

WebStorm Mac version
Useful JavaScript development tools

MinGW - Minimalist GNU for Windows
This project is in the process of being migrated to osdn.net/projects/mingw, you can continue to follow us there. MinGW: A native Windows port of the GNU Compiler Collection (GCC), freely distributable import libraries and header files for building native Windows applications; includes extensions to the MSVC runtime to support C99 functionality. All MinGW software can run on 64-bit Windows platforms.

ZendStudio 13.5.1 Mac
Powerful PHP integrated development environment

Zend Studio 13.0.1
Powerful PHP integrated development environment

EditPlus Chinese cracked version
Small size, syntax highlighting, does not support code prompt function
