前言 在 memcached 源码阅读之 hash table文章的最后我说了,要研究一下 memcached 的 字符串 hash 方法的。 现在就开始记录下研究的结果。 Jenkins hash jenkins 的位置在 jenkins_hash.c . 大端小端 Little-Endian就是低位字节排放在内存的低地址端,高位
前言
在 memcached 源码阅读之 hash table文章的最后我说了,要研究一下 memcached 的 字符串 hash 方法的。
现在就开始记录下研究的结果。
Jenkins hash
jenkins 的位置在 jenkins_hash.c .
大端小端
Little-Endian就是低位字节排放在内存的低地址端,高位字节排放在内存的高地址端。
Big-Endian就是高位字节排放在内存的低地址端,低位字节排放在内存的高地址端。
举一个例子,比如数字0x12 34 56 78在内存中的表示形式为:
1)大端模式: 低地址 -----------------> 高地址 0x12 | 0x34 | 0x56 | 0x78 2)小端模式: 低地址 ------------------> 高地址 0x78 | 0x56 | 0x34 | 0x12
#if ENDIAN_BIG == 1 # define HASH_LITTLE_ENDIAN 0 # define HASH_BIG_ENDIAN 1 #else # if ENDIAN_LITTLE == 1 # define HASH_LITTLE_ENDIAN 1 # define HASH_BIG_ENDIAN 0 # else # define HASH_LITTLE_ENDIAN 0 # define HASH_BIG_ENDIAN 0 # endif #endif
rot 宏
看到的第一个是 rot 宏。
这个宏的作用是循环左移若干位。
#define rot(x,k) (((x)<<(k)) ^ ((x)>>(32-(k))))
mix 宏
一个可逆的加密。
This is reversible, so any information in (a,b,c) before mix() is still in (a,b,c) after mix().
#define mix(a,b,c) \ { \ a -= c; a ^= rot(c, 4); c += b; \ b -= a; b ^= rot(a, 6); a += c; \ c -= b; c ^= rot(b, 8); b += a; \ a -= c; a ^= rot(c,16); c += b; \ b -= a; b ^= rot(a,19); a += c; \ c -= b; c ^= rot(b, 4); b += a; \ }
final 宏
final mixing of 3 32-bit values (a,b,c) into c
将 a,b,c 合并到 c中。
#define final(a,b,c) \ { \ c ^= b; c -= rot(b,14); \ a ^= c; a -= rot(c,11); \ b ^= a; b -= rot(a,25); \ c ^= b; c -= rot(b,16); \ a ^= c; a -= rot(c,4); \ b ^= a; b -= rot(a,14); \ c ^= b; c -= rot(b,24); \ }
hash 算法
源代码中大端小端,而且还分是 0x3 还是 0x1,这个目前就不知道干什么了。
uint32_t jenkins_hash( const void *key, size_t length) { uint32_t a,b,c; a = b = c = 0xdeadbeef + ((uint32_t)length) + 0; const char *k = (const char *)key; while (length > 12) { a += ((uint32_t)k[0])<<24; a += ((uint32_t)k[1])<<16; a += ((uint32_t)k[2])<<8; a += ((uint32_t)k[3]); b += ((uint32_t)k[4])<<24; b += ((uint32_t)k[5])<<16; b += ((uint32_t)k[6])<<8; b += ((uint32_t)k[7]); c += ((uint32_t)k[8])<<24; c += ((uint32_t)k[9])<<16; c += ((uint32_t)k[10])<<8; c += ((uint32_t)k[11]); mix(a,b,c); length -= 12; k += 12; } switch(length) { case 12: c+=k[11]; case 11: c+=((uint32_t)k[10])<<8; case 10: c+=((uint32_t)k[9])<<16; case 9 : c+=((uint32_t)k[8])<<24; case 8 : b+=k[7]; case 7 : b+=((uint32_t)k[6])<<8; case 6 : b+=((uint32_t)k[5])<<16; case 5 : b+=((uint32_t)k[4])<<24; case 4 : a+=k[3]; case 3 : a+=((uint32_t)k[2])<<8; case 2 : a+=((uint32_t)k[1])<<16; case 1 : a+=((uint32_t)k[0])<<24; break; case 0 : return c; } final(a,b,c); return c; }
看完这个代码,我们可以给他缩短一下。
uint32_t jenkins_hash( const void *key, size_t length) { uint32_t a,b,c; a = b = c = 0xdeadbeef + ((uint32_t)length) + 0; const char *k = (const char *)key; while (length >= 12) { a += *((uint32_t*)(k+0)); b += *((uint32_t*)(k+4)); c += *((uint32_t*)(k+8)); mix(a,b,c); length -= 12; k += 12; } if(length == 0) { return c; } switch(length) { case 11: c+=((uint32_t)k[10])<<8; case 10: c+=((uint32_t)k[9])<<16; case 9 : c+=((uint32_t)k[8])<<24; case 8 : b += *((uint32_t*)(k+4)); a += *((uint32_t*)(k+0)); break; case 7 : b+=((uint32_t)k[6])<<8; case 6 : b+=((uint32_t)k[5])<<16; case 5 : b+=((uint32_t)k[4])<<24; case 4 : a += *((uint32_t*)(k+0)); break; case 3 : a+=((uint32_t)k[2])<<8; case 2 : a+=((uint32_t)k[1])<<16; case 1 : a+=((uint32_t)k[0])<<24; } final(a,b,c); return c; }
murmur3 hash
murmur3 hash 的位置在 murmur3_hash.c .
//不检查数据越界问题,主要用于得到一些随机数字 #define FORCE_INLINE inline __attribute__((always_inline)) //循环左移 static inline uint32_t ROTL32 ( uint32_t x, int8_t r ) { return (x << r) | (x >> (32 - r)); } //得到指针p位置的值,i可能为负数 static FORCE_INLINE uint32_t getblock32 ( const uint32_t * p, int i ) { return p[i]; } static FORCE_INLINE uint32_t fmix32 ( uint32_t h ) { h ^= h >> 16; h *= 0x85ebca6b; h ^= h >> 13; h *= 0xc2b2ae35; h ^= h >> 16; return h; } uint32_t MurmurHash3_x86_32 ( const void * key, size_t length) { const uint8_t * data = (const uint8_t*)key; const int nblocks = length / 4; uint32_t h1 = 0; uint32_t c1 = 0xcc9e2d51; uint32_t c2 = 0x1b873593; const uint32_t * blocks = (const uint32_t *)(data + nblocks*4); for(int i = -nblocks; i; i++) { uint32_t k1 = getblock32(blocks,i); k1 *= c1; k1 = ROTL32(k1,15); k1 *= c2; h1 ^= k1; h1 = ROTL32(h1,13); h1 = h1*5+0xe6546b64; } const uint8_t * tail = (const uint8_t*)(data + nblocks*4); uint32_t k1 = 0; switch(length & 3) { case 3: k1 ^= tail[2] << 16; case 2: k1 ^= tail[1] << 8; case 1: k1 ^= tail[0]; k1 *= c1; k1 = ROTL32(k1,15); k1 *= c2; h1 ^= k1; }; h1 ^= length; h1 = fmix32(h1); return h1; }
Additive Hash
ub4 additive(char *key, ub4 len, ub4 prime){ ub4 hash, i; for (hash=len, i=0; i<len; ++i) hash += key[i]; return (hash % prime); }
Rotating Hash
ub4 rotating(char *key, ub4 len, ub4 prime){ ub4 hash, i; for (hash=len, i=0; i<len; ++i) hash = (hash<<4)^(hash>>28)^key[i]; return (hash % prime); }
One-at-a-Time Hash
ub4 one_at_a_time(char *key, ub4 len){ ub4 hash, i; for (hash=0, i=0; i<len; ++i){ hash += key[i]; hash += (hash << 10); hash ^= (hash >> 6); } hash += (hash << 3); hash ^= (hash >> 11); hash += (hash << 15); return (hash & mask); }
Bernstein hash
ub4 bernstein(ub1 *key, ub4 len, ub4 level){ ub4 hash = level; ub4 i; for (i=0; i<len; ++i) hash = 33*hash + key[i]; return hash; }
Goulburn Hash
u4 goulburn( const unsigned char *cp, size_t len, uint32_t last_value){ register u4 h = last_value; int u; for( u=0; u<len; ++u ) { h += g_table0[ cp[u] ]; h ^= (h << 3) ^ (h >> 29); h += g_table1[ h >> 25 ]; h ^= (h << 14) ^ (h >> 18); h += 1783936964UL; } return h; }
Murmur Hash
uint32_t MurmurHash1 ( const void * key, int len, uint32_t seed ){ const unsigned int m = 0xc6a4a793;
const int r = 16; unsigned int h = seed ^ (len * m); //---------- const unsigned char * data = (const unsigned char *)key; while(len >= 4){ unsigned int k = *(unsigned int *)data; h += k; h *= m; h ^= h >> 16; data += 4; len -= 4; } //---------- switch(len){ case 3: h += data[2] << 16; case 2: h += data[1] << 8; case 1: h += data[0]; h *= m; h ^= h >> r; }; //---------- h *= m; h ^= h >> 10; h *= m; h ^= h >> 17; return h;
}
Pearson Hash
//This preinitializes tab[] to an arbitrary permutation of 0 .. 255. char pearson(char *key, ub4 len, char tab[256]){ char hash; ub4 i; for (hash=len, i=0; i<len; ++i) hash=tab[hash^key[i]]; return (hash); }
CRC Hashing
ub4 crc(char *key, ub4 len, ub4 mask, ub4 tab[256]){ ub4 hash, i; for (hash=len, i=0; i<len; ++i) hash = (hash >> 8) ^ tab[(hash & 0xff) ^ key[i]]; return (hash & mask); }
Generalized CRC Hashing
//The size of tab[] is the maximum number of input bits. //Values in tab[] are chosen at random. ub4 universal(char *key, ub4 len, ub4 mask, ub4 tab[MAXBITS]){ ub4 hash, i; for (hash=len, i=0; i<(len<<3); i+=8){ register char k = key[i>>3]; if (k&0x01) hash ^= tab[i+0]; if (k&0x02) hash ^= tab[i+1]; if (k&0x04) hash ^= tab[i+2]; if (k&0x08) hash ^= tab[i+3]; if (k&0x10) hash ^= tab[i+4]; if (k&0x20) hash ^= tab[i+5]; if (k&0x40) hash ^= tab[i+6]; if (k&0x80) hash ^= tab[i+7]; } return (hash & mask); }
Zobrist Hashing
ub4 zobrist( char *key, ub4 len, ub4 mask, ub4 tab[MAXBYTES][256]){ ub4 hash, i; for (hash=len, i=0; i<len; ++i) hash ^= tab[i][key[i]]; return (hash & mask); }
本文出自:http://tiankonguse.github.io, 原文地址:http://github.tiankonguse.com//blog/2014/11/07/memcached-string-hash/, 感谢原作者分享。

MySQLviewshavelimitations:1)Theydon'tsupportallSQLoperations,restrictingdatamanipulationthroughviewswithjoinsorsubqueries.2)Theycanimpactperformance,especiallywithcomplexqueriesorlargedatasets.3)Viewsdon'tstoredata,potentiallyleadingtooutdatedinforma

ProperusermanagementinMySQLiscrucialforenhancingsecurityandensuringefficientdatabaseoperation.1)UseCREATEUSERtoaddusers,specifyingconnectionsourcewith@'localhost'or@'%'.2)GrantspecificprivilegeswithGRANT,usingleastprivilegeprincipletominimizerisks.3)

MySQLdoesn'timposeahardlimitontriggers,butpracticalfactorsdeterminetheireffectiveuse:1)Serverconfigurationimpactstriggermanagement;2)Complextriggersincreasesystemload;3)Largertablesslowtriggerperformance;4)Highconcurrencycancausetriggercontention;5)M

Yes,it'ssafetostoreBLOBdatainMySQL,butconsiderthesefactors:1)StorageSpace:BLOBscanconsumesignificantspace,potentiallyincreasingcostsandslowingperformance.2)Performance:LargerrowsizesduetoBLOBsmayslowdownqueries.3)BackupandRecovery:Theseprocessescanbe

Adding MySQL users through the PHP web interface can use MySQLi extensions. The steps are as follows: 1. Connect to the MySQL database and use the MySQLi extension. 2. Create a user, use the CREATEUSER statement, and use the PASSWORD() function to encrypt the password. 3. Prevent SQL injection and use the mysqli_real_escape_string() function to process user input. 4. Assign permissions to new users and use the GRANT statement.

MySQL'sBLOBissuitableforstoringbinarydatawithinarelationaldatabase,whileNoSQLoptionslikeMongoDB,Redis,andCassandraofferflexible,scalablesolutionsforunstructureddata.BLOBissimplerbutcanslowdownperformancewithlargedata;NoSQLprovidesbetterscalabilityand

ToaddauserinMySQL,use:CREATEUSER'username'@'host'IDENTIFIEDBY'password';Here'showtodoitsecurely:1)Choosethehostcarefullytocontrolaccess.2)SetresourcelimitswithoptionslikeMAX_QUERIES_PER_HOUR.3)Usestrong,uniquepasswords.4)EnforceSSL/TLSconnectionswith

ToavoidcommonmistakeswithstringdatatypesinMySQL,understandstringtypenuances,choosetherighttype,andmanageencodingandcollationsettingseffectively.1)UseCHARforfixed-lengthstrings,VARCHARforvariable-length,andTEXT/BLOBforlargerdata.2)Setcorrectcharacters


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

SublimeText3 Linux new version
SublimeText3 Linux latest version

SecLists
SecLists is the ultimate security tester's companion. It is a collection of various types of lists that are frequently used during security assessments, all in one place. SecLists helps make security testing more efficient and productive by conveniently providing all the lists a security tester might need. List types include usernames, passwords, URLs, fuzzing payloads, sensitive data patterns, web shells, and more. The tester can simply pull this repository onto a new test machine and he will have access to every type of list he needs.

ZendStudio 13.5.1 Mac
Powerful PHP integrated development environment

DVWA
Damn Vulnerable Web App (DVWA) is a PHP/MySQL web application that is very vulnerable. Its main goals are to be an aid for security professionals to test their skills and tools in a legal environment, to help web developers better understand the process of securing web applications, and to help teachers/students teach/learn in a classroom environment Web application security. The goal of DVWA is to practice some of the most common web vulnerabilities through a simple and straightforward interface, with varying degrees of difficulty. Please note that this software

Notepad++7.3.1
Easy-to-use and free code editor
