search

Spark在YARN中有yarn-cluster和yarn-client两种运行模式: I. Yarn Cluster Spark Driver首先作为一个ApplicationMaster在YARN集群中启动,客户端提交给ResourceManager的每一个job都会在集群的worker节点上分配一个唯一的ApplicationMaster,由该Application

Spark在YARN中有yarn-cluster和yarn-client两种运行模式:

I. Yarn Cluster

Spark Driver首先作为一个ApplicationMaster在YARN集群中启动,客户端提交给ResourceManager的每一个job都会在集群的worker节点上分配一个唯一的ApplicationMaster,由该ApplicationMaster管理全生命周期的应用。因为Driver程序在YARN中运行,所以事先不用启动Spark Master/Client,应用的运行结果不能在客户端显示(可以在history server中查看),所以最好将结果保存在HDFS而非stdout输出,客户端的终端显示的是作为YARN的job的简单运行状况。
sparn-yarn1
by @Sandy Ryza
spark-yarn2
by 明风@taobao
从terminal的output中看到任务初始化更详细的四个步骤:

14/09/28 11:24:52 INFO RMProxy: Connecting to ResourceManager at hdp01/172.19.1.231:8032
14/09/28 11:24:52 INFO Client: Got Cluster metric info from ApplicationsManager (ASM), number of NodeManagers: 4
14/09/28 11:24:52 INFO Client: Queue info ... queueName: root.default, queueCurrentCapacity: 0.0, queueMaxCapacity: -1.0,
      queueApplicationCount = 0, queueChildQueueCount = 0
14/09/28 11:24:52 INFO Client: Max mem capabililty of a single resource in this cluster 8192
14/09/28 11:24:53 INFO Client: Uploading file:/usr/lib/spark/examples/lib/spark-examples_2.10-1.0.0-cdh5.1.0.jar to hdfs://hdp01:8020/user/spark/.sparkStaging/application_1411874193696_0003/spark-examples_2.10-1.0.0-cdh5.1.0.jar
14/09/28 11:24:54 INFO Client: Uploading file:/usr/lib/spark/assembly/lib/spark-assembly-1.0.0-cdh5.1.0-hadoop2.3.0-cdh5.1.0.jar to hdfs://hdp01:8020/user/spark/.sparkStaging/application_1411874193696_0003/spark-assembly-1.0.0-cdh5.1.0-hadoop2.3.0-cdh5.1.0.jar
14/09/28 11:24:55 INFO Client: Setting up the launch environment
14/09/28 11:24:55 INFO Client: Setting up container launch context
14/09/28 11:24:55 INFO Client: Command for starting the Spark ApplicationMaster: List($JAVA_HOME/bin/java, -server, -Xmx512m, -Djava.io.tmpdir=$PWD/tmp, -Dspark.master=\"spark://hdp01:7077\", -Dspark.app.name=\"org.apache.spark.examples.SparkPi\", -Dspark.eventLog.enabled=\"true\", -Dspark.eventLog.dir=\"/user/spark/applicationHistory\",  -Dlog4j.configuration=log4j-spark-container.properties, org.apache.spark.deploy.yarn.ApplicationMaster, --class, org.apache.spark.examples.SparkPi, --jar , file:/usr/lib/spark/examples/lib/spark-examples_2.10-1.0.0-cdh5.1.0.jar, , --executor-memory, 1024, --executor-cores, 1, --num-executors , 2, 1>, /stdout, 2>, /stderr)
14/09/28 11:24:55 INFO Client: Submitting application to ASM
14/09/28 11:24:55 INFO YarnClientImpl: Submitted application application_1411874193696_0003
14/09/28 11:24:56 INFO Client: Application report from ASM:
application identifier: application_1411874193696_0003
     appId: 3
     clientToAMToken: null
     appDiagnostics: 
     appMasterHost: N/A
     appQueue: root.spark
     appMasterRpcPort: -1
     appStartTime: 1411874695327
     yarnAppState: ACCEPTED
     distributedFinalState: UNDEFINED
     appTrackingUrl: http://hdp01:8088/proxy/application_1411874193696_0003/
     appUser: spark

1. 由client向ResourceManager提交请求,并上传jar到HDFS上
这期间包括四个步骤:
a). 连接到RM
b). 从RM ASM(ApplicationsManager )中获得metric、queue和resource等信息。
c). upload app jar and spark-assembly jar
d). 设置运行环境和container上下文(launch-container.sh等脚本)
2. ResouceManager向NodeManager申请资源,创建Spark ApplicationMaster(每个SparkContext都有一个ApplicationMaster)
3. NodeManager启动Spark App Master,并向ResourceManager AsM注册
4. Spark ApplicationMaster从HDFS中找到jar文件,启动DAGscheduler和YARN Cluster Scheduler
5. ResourceManager向ResourceManager AsM注册申请container资源(INFO YarnClientImpl: Submitted application)
6. ResourceManager通知NodeManager分配Container,这时可以收到来自ASM关于container的报告。(每个container的对应一个executor)
7. Spark ApplicationMaster直接和container(executor)进行交互,完成这个分布式任务。
需要注意的是:
a). Spark中的localdir会被yarn.nodemanager.local-dirs替换
b). 允许失败的节点数(spark.yarn.max.worker.failures)为executor数量的两倍数量,最小为3.
c). SPARK_YARN_USER_ENV传递给spark进程的环境变量
d). 传递给app的参数应该通过–args指定。
部署:
环境介绍:
hdp0[1-4]四台主机
hadoop使用CDH 5.1版本: hadoop-2.3.0+cdh5.1.0+795-1.cdh5.1.0.p0.58.el6.x86_64
直接下载对应2.3.0的pre-build版本http://spark.apache.org/downloads.html
下载完毕后解压,检查spark-assembly目录:
file /home/spark/spark-1.1.0-bin-hadoop2.3/lib/spark-assembly-1.1.0-hadoop2.3.0.jar
/home/spark/spark-1.1.0-bin-hadoop2.3/lib/spark-assembly-1.1.0-hadoop2.3.0.jar: Zip archive data, at least v2.0 to extract
然后输出环境变量HADOOP_CONF_DIR/YARN_CONF_DIR和SPARK_JAR(可以设置到spark-env.sh中)
export HADOOP_CONF_DIR=/etc/hadoop/etc
export SPARK_JAR=/home/spark/spark-1.1.0-bin-hadoop2.3/lib/spark-assembly-1.1.0-hadoop2.3.0.jar
如果使用cloudera manager 5,在Spark Service的操作中可以找到Upload Spark Jar将spark-assembly上传到HDFS上。
spark-yarn3

Spark Jar Location (HDFS) 
spark_jar_hdfs_path

/user/spark/share/lib/spark-assembly.jar

默认值

The location of the Spark jar in HDFS

Spark History Location (HDFS) 
spark.eventLog.dir

/user/spark/applicationHistory

默认值

The location of Spark application history logs in HDFS. Changing this value will not move existing logs to the new location.

提交任务,此时在YARN的web UI和history Server上就可以看到运行状态信息。

spark-submit --class org.apache.spark.examples.SparkPi --master yarn-cluster /usr/lib/spark/examples/lib/spark-examples_2.10-1.0.0-cdh5.1.0.jar

II. yarn-client

(YarnClientClusterScheduler)查看对应类的文件
在yarn-client模式下,Driver运行在Client上,通过ApplicationMaster向RM获取资源。本地Driver负责与所有的executor container进行交互,并将最后的结果汇总。结束掉终端,相当于kill掉这个spark应用。一般来说,如果运行的结果仅仅返回到terminal上时需要配置这个。
spark-yarn4
客户端的Driver将应用提交给Yarn后,Yarn会先后启动ApplicationMaster和executor,另外ApplicationMaster和executor都 是装载在container里运行,container默认的内存是1G,ApplicationMaster分配的内存是driver- memory,executor分配的内存是executor-memory。同时,因为Driver在客户端,所以程序的运行结果可以在客户端显 示,Driver以进程名为SparkSubmit的形式存在。
配置YARN-Client模式同样需要HADOOP_CONF_DIR/YARN_CONF_DIR和SPARK_JAR变量。
提交任务测试:

spark-submit --class org.apache.spark.examples.SparkPi --deploy-mode client /usr/lib/spark/examples/lib/spark-examples_2.10-1.0.0-cdh5.1.0.jar
terminal output:
14/09/28 11:18:34 INFO Client: Command for starting the Spark ApplicationMaster: List($JAVA_HOME/bin/java, -server, -Xmx512m, -Djava.io.tmpdir=$PWD/tmp, -Dspark.tachyonStore.folderName=\"spark-9287f0f2-2e72-4617-a418-e0198626829b\", -Dspark.eventLog.enabled=\"true\", -Dspark.yarn.secondary.jars=\"\", -Dspark.driver.host=\"hdp01\", -Dspark.driver.appUIHistoryAddress=\"\", -Dspark.app.name=\"Spark Pi\", -Dspark.jars=\"file:/usr/lib/spark/examples/lib/spark-examples_2.10-1.0.0-cdh5.1.0.jar\", -Dspark.fileserver.uri=\"http://172.19.17.231:53558\", -Dspark.eventLog.dir=\"/user/spark/applicationHistory\", -Dspark.master=\"yarn-client\", -Dspark.driver.port=\"35938\", -Dspark.httpBroadcast.uri=\"http://172.19.17.231:43804\",  -Dlog4j.configuration=log4j-spark-container.properties, org.apache.spark.deploy.yarn.ExecutorLauncher, --class, notused, --jar , null,  --args  'hdp01:35938' , --executor-memory, 1024, --executor-cores, 1, --num-executors , 2, 1>, /stdout, 2>, /stderr)
14/09/28 11:18:34 INFO Client: Submitting application to ASM
14/09/28 11:18:34 INFO YarnClientSchedulerBackend: Application report from ASM: 
     appMasterRpcPort: -1
     appStartTime: 1411874314198
     yarnAppState: ACCEPTED
......

##最后将结果输出到terminal中
Pi is roughly 3.14528

^^

Statement
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn
MySQL: An Introduction to the World's Most Popular DatabaseMySQL: An Introduction to the World's Most Popular DatabaseApr 12, 2025 am 12:18 AM

MySQL is an open source relational database management system, mainly used to store and retrieve data quickly and reliably. Its working principle includes client requests, query resolution, execution of queries and return results. Examples of usage include creating tables, inserting and querying data, and advanced features such as JOIN operations. Common errors involve SQL syntax, data types, and permissions, and optimization suggestions include the use of indexes, optimized queries, and partitioning of tables.

The Importance of MySQL: Data Storage and ManagementThe Importance of MySQL: Data Storage and ManagementApr 12, 2025 am 12:18 AM

MySQL is an open source relational database management system suitable for data storage, management, query and security. 1. It supports a variety of operating systems and is widely used in Web applications and other fields. 2. Through the client-server architecture and different storage engines, MySQL processes data efficiently. 3. Basic usage includes creating databases and tables, inserting, querying and updating data. 4. Advanced usage involves complex queries and stored procedures. 5. Common errors can be debugged through the EXPLAIN statement. 6. Performance optimization includes the rational use of indexes and optimized query statements.

Why Use MySQL? Benefits and AdvantagesWhy Use MySQL? Benefits and AdvantagesApr 12, 2025 am 12:17 AM

MySQL is chosen for its performance, reliability, ease of use, and community support. 1.MySQL provides efficient data storage and retrieval functions, supporting multiple data types and advanced query operations. 2. Adopt client-server architecture and multiple storage engines to support transaction and query optimization. 3. Easy to use, supports a variety of operating systems and programming languages. 4. Have strong community support and provide rich resources and solutions.

Describe InnoDB locking mechanisms (shared locks, exclusive locks, intention locks, record locks, gap locks, next-key locks).Describe InnoDB locking mechanisms (shared locks, exclusive locks, intention locks, record locks, gap locks, next-key locks).Apr 12, 2025 am 12:16 AM

InnoDB's lock mechanisms include shared locks, exclusive locks, intention locks, record locks, gap locks and next key locks. 1. Shared lock allows transactions to read data without preventing other transactions from reading. 2. Exclusive lock prevents other transactions from reading and modifying data. 3. Intention lock optimizes lock efficiency. 4. Record lock lock index record. 5. Gap lock locks index recording gap. 6. The next key lock is a combination of record lock and gap lock to ensure data consistency.

What are common causes of poor MySQL query performance?What are common causes of poor MySQL query performance?Apr 12, 2025 am 12:11 AM

The main reasons for poor MySQL query performance include not using indexes, wrong execution plan selection by the query optimizer, unreasonable table design, excessive data volume and lock competition. 1. No index causes slow querying, and adding indexes can significantly improve performance. 2. Use the EXPLAIN command to analyze the query plan and find out the optimizer error. 3. Reconstructing the table structure and optimizing JOIN conditions can improve table design problems. 4. When the data volume is large, partitioning and table division strategies are adopted. 5. In a high concurrency environment, optimizing transactions and locking strategies can reduce lock competition.

When should you use a composite index versus multiple single-column indexes?When should you use a composite index versus multiple single-column indexes?Apr 11, 2025 am 12:06 AM

In database optimization, indexing strategies should be selected according to query requirements: 1. When the query involves multiple columns and the order of conditions is fixed, use composite indexes; 2. When the query involves multiple columns but the order of conditions is not fixed, use multiple single-column indexes. Composite indexes are suitable for optimizing multi-column queries, while single-column indexes are suitable for single-column queries.

How to identify and optimize slow queries in MySQL? (slow query log, performance_schema)How to identify and optimize slow queries in MySQL? (slow query log, performance_schema)Apr 10, 2025 am 09:36 AM

To optimize MySQL slow query, slowquerylog and performance_schema need to be used: 1. Enable slowquerylog and set thresholds to record slow query; 2. Use performance_schema to analyze query execution details, find out performance bottlenecks and optimize.

MySQL and SQL: Essential Skills for DevelopersMySQL and SQL: Essential Skills for DevelopersApr 10, 2025 am 09:30 AM

MySQL and SQL are essential skills for developers. 1.MySQL is an open source relational database management system, and SQL is the standard language used to manage and operate databases. 2.MySQL supports multiple storage engines through efficient data storage and retrieval functions, and SQL completes complex data operations through simple statements. 3. Examples of usage include basic queries and advanced queries, such as filtering and sorting by condition. 4. Common errors include syntax errors and performance issues, which can be optimized by checking SQL statements and using EXPLAIN commands. 5. Performance optimization techniques include using indexes, avoiding full table scanning, optimizing JOIN operations and improving code readability.

See all articles

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

AI Hentai Generator

AI Hentai Generator

Generate AI Hentai for free.

Hot Article

R.E.P.O. Energy Crystals Explained and What They Do (Yellow Crystal)
3 weeks agoBy尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Best Graphic Settings
3 weeks agoBy尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. How to Fix Audio if You Can't Hear Anyone
3 weeks agoBy尊渡假赌尊渡假赌尊渡假赌
WWE 2K25: How To Unlock Everything In MyRise
3 weeks agoBy尊渡假赌尊渡假赌尊渡假赌

Hot Tools

MantisBT

MantisBT

Mantis is an easy-to-deploy web-based defect tracking tool designed to aid in product defect tracking. It requires PHP, MySQL and a web server. Check out our demo and hosting services.

Dreamweaver Mac version

Dreamweaver Mac version

Visual web development tools

ZendStudio 13.5.1 Mac

ZendStudio 13.5.1 Mac

Powerful PHP integrated development environment

MinGW - Minimalist GNU for Windows

MinGW - Minimalist GNU for Windows

This project is in the process of being migrated to osdn.net/projects/mingw, you can continue to follow us there. MinGW: A native Windows port of the GNU Compiler Collection (GCC), freely distributable import libraries and header files for building native Windows applications; includes extensions to the MSVC runtime to support C99 functionality. All MinGW software can run on 64-bit Windows platforms.

SublimeText3 Chinese version

SublimeText3 Chinese version

Chinese version, very easy to use