intset 和 dict 都是 sadd 命令的底层数据结构,当添加的所有数据都是整数时,会使用前者;否则使用后者。 特别的 ,当遇到添加数据为字符串,即不能表示为整数时,redis 会把数据结构转换为 dict,即把 intset 中的数据全部搬迁到 dict。 本片展开的是 ints
intset 和 dict 都是 sadd 命令的底层数据结构,当添加的所有数据都是整数时,会使用前者;否则使用后者。特别的,当遇到添加数据为字符串,即不能表示为整数时,redis 会把数据结构转换为 dict,即把 intset 中的数据全部搬迁到 dict。
本片展开的是 intset,dict 的文章可以参看之前写的《深入剖析 redis 数据结构 dict》。
intset 结构体
intset 底层本质是一个有序的、不重复的、整型的数组,支持不同类型整数。
typedef struct intset { // 每个整数的类型 uint32_t encoding; // intset 长度 uint32_t length; // 整数数组 int8_t contents[]; } intset;
encoding 能下面的三个值:分别是 16,32 和 64位整数:
/* Note that these encodings are ordered, so: * INTSET_ENC_INT16 <h3 id="intset-搜索">intset 搜索</h3> <p>intset 是有序的整数数组,可以用二分搜索查找。</p> <pre class="brush:php;toolbar:false">static uint8_t intsetSearch(intset *is, int64_t value, uint32_t *pos) { int min = 0, max = intrev32ifbe(is->length)-1, mid = -1; int64_t cur = -1; /* The value can never be found when the set is empty */ // 集合为空 if (intrev32ifbe(is->length) == 0) { if (pos) *pos = 0; return 0; } else { /* Check for the case where we know we cannot find the value, * but do know the insert position. */ // value 比最大元素还大 if (value > _intsetGet(is,intrev32ifbe(is->length)-1)) { if (pos) *pos = intrev32ifbe(is->length); return 0; // value 比最小元素还小 } else if (value = min) { mid = (min+max)/2; cur = _intsetGet(is,mid); if (value > cur) { min = mid+1; } else if (value <h3 id="intset-插入">intset 插入</h3> <p>intset 实现中比较远有意思的是插入算法部分。</p> <pre class="brush:php;toolbar:false">/* Insert an integer in the intset */ intset *intsetAdd(intset *is, int64_t value, uint8_t *success) { uint8_t valenc = _intsetValueEncoding(value); uint32_t pos; if (success) *success = 1; /* Upgrade encoding if necessary. If we need to upgrade, we know that * this value should be either appended (if > 0) or prepended (if intrev32ifbe(is->encoding)) { /* This always succeeds, so we don't need to curry *success. */ return intsetUpgradeAndAdd(is,value); // 正常,分配内存,插入 } else { // intset 内部不允许重复 /* Abort if the value is already present in the set. * This call will populate "pos" with the right position to insert * the value when it cannot be found. */ if (intsetSearch(is,value,&pos)) { if (success) *success = 0; return is; } // realloc is = intsetResize(is,intrev32ifbe(is->length)+1); // 迁移内存,腾出空间给新的数据。intsetMoveTail() 完成内存迁移工作 if (pos length)) intsetMoveTail(is,pos,pos+1); } // 在腾出的空间中设置新的数据 _intsetSet(is,pos,value); // 更新 intset size is->length = intrev32ifbe(intrev32ifbe(is->length)+1); return is; } // 升级整数类型,譬如从 short->int。当插入数据的内存占用比原有数据大 // 的时候,会被调用 /* Upgrades the intset to a larger encoding and inserts the given integer. */ static intset *intsetUpgradeAndAdd(intset *is, int64_t value) { uint8_t curenc = intrev32ifbe(is->encoding); uint8_t newenc = _intsetValueEncoding(value); int length = intrev32ifbe(is->length); // value0 尾插 int prepend = value encoding = intrev32ifbe(newenc); is = intsetResize(is,intrev32ifbe(is->length)+1); // 逆向处理,防止数据被覆盖,一般的插入排序步骤 /* Upgrade back-to-front so we don't overwrite values. * Note that the "prepend" variable is used to make sure we have an empty * space at either the beginning or the end of the intset. */ while(length--) _intsetSet(is,length+prepend,_intsetGetEncoded(is,length,curenc)); // valuelength),value); // 更新 set size is->length = intrev32ifbe(intrev32ifbe(is->length)+1); return is; }
捣乱 2014-7-3
http://daoluan.net
原文地址:深入剖析 redis 数据结构 intset, 感谢原作者分享。

Stored procedures are precompiled SQL statements in MySQL for improving performance and simplifying complex operations. 1. Improve performance: After the first compilation, subsequent calls do not need to be recompiled. 2. Improve security: Restrict data table access through permission control. 3. Simplify complex operations: combine multiple SQL statements to simplify application layer logic.

The working principle of MySQL query cache is to store the results of SELECT query, and when the same query is executed again, the cached results are directly returned. 1) Query cache improves database reading performance and finds cached results through hash values. 2) Simple configuration, set query_cache_type and query_cache_size in MySQL configuration file. 3) Use the SQL_NO_CACHE keyword to disable the cache of specific queries. 4) In high-frequency update environments, query cache may cause performance bottlenecks and needs to be optimized for use through monitoring and adjustment of parameters.

The reasons why MySQL is widely used in various projects include: 1. High performance and scalability, supporting multiple storage engines; 2. Easy to use and maintain, simple configuration and rich tools; 3. Rich ecosystem, attracting a large number of community and third-party tool support; 4. Cross-platform support, suitable for multiple operating systems.

The steps for upgrading MySQL database include: 1. Backup the database, 2. Stop the current MySQL service, 3. Install the new version of MySQL, 4. Start the new version of MySQL service, 5. Recover the database. Compatibility issues are required during the upgrade process, and advanced tools such as PerconaToolkit can be used for testing and optimization.

MySQL backup policies include logical backup, physical backup, incremental backup, replication-based backup, and cloud backup. 1. Logical backup uses mysqldump to export database structure and data, which is suitable for small databases and version migrations. 2. Physical backups are fast and comprehensive by copying data files, but require database consistency. 3. Incremental backup uses binary logging to record changes, which is suitable for large databases. 4. Replication-based backup reduces the impact on the production system by backing up from the server. 5. Cloud backups such as AmazonRDS provide automation solutions, but costs and control need to be considered. When selecting a policy, database size, downtime tolerance, recovery time, and recovery point goals should be considered.

MySQLclusteringenhancesdatabaserobustnessandscalabilitybydistributingdataacrossmultiplenodes.ItusestheNDBenginefordatareplicationandfaulttolerance,ensuringhighavailability.Setupinvolvesconfiguringmanagement,data,andSQLnodes,withcarefulmonitoringandpe

Optimizing database schema design in MySQL can improve performance through the following steps: 1. Index optimization: Create indexes on common query columns, balancing the overhead of query and inserting updates. 2. Table structure optimization: Reduce data redundancy through normalization or anti-normalization and improve access efficiency. 3. Data type selection: Use appropriate data types, such as INT instead of VARCHAR, to reduce storage space. 4. Partitioning and sub-table: For large data volumes, use partitioning and sub-table to disperse data to improve query and maintenance efficiency.

TooptimizeMySQLperformance,followthesesteps:1)Implementproperindexingtospeedupqueries,2)UseEXPLAINtoanalyzeandoptimizequeryperformance,3)Adjustserverconfigurationsettingslikeinnodb_buffer_pool_sizeandmax_connections,4)Usepartitioningforlargetablestoi


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

VSCode Windows 64-bit Download
A free and powerful IDE editor launched by Microsoft

SublimeText3 English version
Recommended: Win version, supports code prompts!

MantisBT
Mantis is an easy-to-deploy web-based defect tracking tool designed to aid in product defect tracking. It requires PHP, MySQL and a web server. Check out our demo and hosting services.

Atom editor mac version download
The most popular open source editor

SublimeText3 Chinese version
Chinese version, very easy to use
