This is a guest post by Nicolas Clairon, maintainer of MongoKit and founder of Elkorado MongoKit is a python ODM for MongoDB. I created it in 2009 (when the ODM acronym wasnt even used) for my startup project called Elkorado. Now that the
This is a guest post by Nicolas Clairon, maintainer of MongoKit and founder of Elkorado
MongoKit is a python ODM for MongoDB. I created it in 2009 (when the ODM acronym wasn’t even used) for my startup project called Elkorado. Now that the service is live, I realize that I never wrote about MongoKit. I’d like to introduce it to you with this quick tutorial based on real use cases from Elkorado.
Elkorado: a place to store web nuggets
Elkorado is a collaborative, interest-based curation tool. It was born over the frustration that there is no place where to find quality resources about a particular topic of interest. There are so many blogs, forums, videos and websites out there that it is very difficult to find our way over this massive wealth of information.
Elkorado aims at helping people to centralize quality content, so they can find them later easily and discover new ones.
MongoDB to the rescue
Rapid prototyping is one of the most important thing in startup world and it is an area where MongoDB shines.
The web is changing fast, and so are web resources and their metadata. MongoDB’s and schemaless database is a perfect fit to store this kind of data. After losing hair by trying to use polymorphism with SQL databases, I went into MongoDB… and I felt in love with it.
While playing with the data, I needed a validation layer and wanted to add some methods to my documents. Back then, they was no ODM for Python. And so I created MongoKit.
MongoKit: MongoDB ODM for Python
MongoKit is a thin layer on top of Pymongo. It brings field validations, inheritance, polymorphism and a bunch of other features. Let’s see how it is used in Elkorado.
Elkorado is a collection of quality web resources called nuggets. This is how we could fetch a nugget discovered by the user “namlook” with Pymongo:
nuggets
here is a regular python dict.
Here’s a simple nugget definition with MongoKit:
Fetching a nugget with MongoKit is pretty the same:
However, this time, nugget is a Nugget
object and we can call the is_popular
method on it:
One of the main advantages of MongoKit is that all your models are registered and accessible via the connection
instance. MongoKit look at the __database__
and __collection__
fields to know which database and which collection has to be used. This is useful so we have only one place to specify those variables.
Inheritance
MongoKit was first build to natively support inheritance:
In this Core
object, we are defining the database name and some fields that will be shared by other models.
If one wants a Nugget
object to have date metadata, one just have to make it inherit from Core
:
It’s all about Pymongo
With MongoKit, your are still very close to Pymongo. In fact, MongoKit’s connection, database and collection are subclasses of Pymongo’s. If once in an algorithm, you need pure performances, you can directly use Pymongo’s layer which is blazing fast:
Here, connection
is a MongoKit connection but it can be used like a Pymongo connection. Note that to keep the benefice of DRY, we can call the pymongo’s layer from a MongoKit document:
A real life “simplified” example
Let’s see an example of CRUD done with MongoKit.
On Elkorado, each nugget is unique but multiple users can share a nugget which have differents metadata. Each time a user picks up a nugget, a UserNugget
is created with specific informations. If this is the first time the nugget is discovered, a Nugget
object is created, otherwise, it is updated. Here is a simplified UserNugget
structure:
This example well describes what can be done with MongoKit. Here, the save
method has been overloaded to check if a nugget exists (remember, each nugget is unique by its URL). It will create it if it is not already created, and update it.
Updating data with MongoKit is similar to Pymongo. Use save
on the object or use directly the Pymongo’s layer to make atomic updates. Here, we use atomic updates to push new topics and increase the popularity:
Getting live
Let’s play with our model:
When calling the save method, the document is validated against the UserNugget’s structure. As expected, the fields created_at
and updated_at
have been added:
and the related nugget has been created:
Conclusion
MongoKit is a central piece of Elkorado. It has been written to be small and minimalist but powerful. There is so much more to say about features like inherited queries, i18n and gridFS, so take a look at the wiki to read more about how this tool can help you.
Check the documentation for more information about MongoKit. And if you register on Elkorado, check out the nuggets about MongoDB. Don’t hesitate to share you nuggets as well, the more the merrier.
原文地址:Managing the web nuggets with MongoDB and MongoKit, 感谢原作者分享。

机器之能报道编辑:吴昕国内版的人形机器人+大模型组队,首次完成叠衣服这类复杂柔性材料的操作任务。随着融合了OpenAI多模态大模型的Figure01揭开神秘面纱,国内同行的相关进展一直备受关注。就在昨天,国内"人形机器人第一股"优必选发布了人形机器人WalkerS深入融合百度文心大模型后的首个Demo,展示了一些有趣的新功能。现在,得到百度文心大模型能力加持的WalkerS是这个样子的。和Figure01一样,WalkerS没有走动,而是站在桌子后面完成一系列任务。它可以听从人类的命令,折叠衣物

译者 | 李睿审校 | 孙淑娟Web Speech API是一种Web技术,允许用户将语音数据合并到应用程序中。它可以通过浏览器将语音转换为文本,反之亦然。Web Speech API于2012年由W3C社区引入。而在十年之后,这个API仍在开发中,这是因为浏览器兼容性有限。该API既支持短时输入片段,例如一个口头命令,也支持长时连续的输入。广泛的听写能力使它非常适合与Applause应用程序集成,而简短的输入很适合语言翻译。语音识别对可访问性产生了巨大的影响。残疾用户可以使用语音更轻松地浏览

docker部署javaweb系统1.在root目录下创建一个路径test/appmkdirtest&&cdtest&&mkdirapp&&cdapp2.将apache-tomcat-7.0.29.tar.gz及jdk-7u25-linux-x64.tar.gz拷贝到app目录下3.解压两个tar.gz文件tar-zxvfapache-tomcat-7.0.29.tar.gztar-zxvfjdk-7u25-linux-x64.tar.gz4.对解

web端指的是电脑端的网页版。在网页设计中我们称web为网页,它表现为三种形式,分别是超文本(hypertext)、超媒体(hypermedia)和超文本传输协议(HTTP)。

区别:1、前端指的是用户可见的界面,后端是指用户看不见的东西,考虑的是底层业务逻辑的实现,平台的稳定性与性能等。2、前端开发用到的技术包括html5、css3、js、jquery、Bootstrap、Node.js、Vue等;而后端开发用到的是java、php、Http协议等服务器技术。3、从应用范围来看,前端开发不仅被常人所知,且应用场景也要比后端广泛的太多太多。

web前端打包工具有:1、Webpack,是一个模块化管理工具和打包工具可以将不同模块的文件打包整合在一起,并且保证它们之间的引用正确,执行有序;2、Grunt,一个前端打包构建工具;3、Gulp,用代码方式来写打包脚本;4、Rollup,ES6模块化打包工具;5、Parcel,一款速度极快、零配置的web应用程序打包器;6、equireJS,是一个JS文件和模块加载器。

怎么解决高并发大流量问题?下面本篇文章就来给大家分享下高并发大流量web解决思路及方案,希望对大家有所帮助!

和它本身的轻便一样,Bottle库的使用也十分简单。相信在看到本文前,读者对python也已经有了简单的了解。那么究竟何种神秘的操作,才能用百行代码完成一个服务器的功能?让我们拭目以待。1. Bottle库安装1)使用pip安装2)下载Bottle文件https://github.com/bottlepy/bottle/blob/master/bottle.py2.“HelloWorld!”所谓万事功成先HelloWorld,从这个简单的示例中,了解Bottle的基本机制。先上代码:首先我们从b


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

Zend Studio 13.0.1
Powerful PHP integrated development environment

EditPlus Chinese cracked version
Small size, syntax highlighting, does not support code prompt function

Dreamweaver Mac version
Visual web development tools

Atom editor mac version download
The most popular open source editor

mPDF
mPDF is a PHP library that can generate PDF files from UTF-8 encoded HTML. The original author, Ian Back, wrote mPDF to output PDF files "on the fly" from his website and handle different languages. It is slower than original scripts like HTML2FPDF and produces larger files when using Unicode fonts, but supports CSS styles etc. and has a lot of enhancements. Supports almost all languages, including RTL (Arabic and Hebrew) and CJK (Chinese, Japanese and Korean). Supports nested block-level elements (such as P, DIV),
