Home >Database >Mysql Tutorial >Impala源代码分析(3)-backend查询执行过程
这篇文章主要介绍impala-backend是怎么执行一个SQL Query的。 在Impala中SQL Query的入口函数是: void ImpalaServer::query(QueryHandle query_handle, const Query query) 生成一个QueryExecState伴随这个SQL执行的生命周期,代表正在执行的这个SQL; 调用E
这篇文章主要介绍impala-backend是怎么执行一个SQL Query的。
在Impala中SQL Query的入口函数是:
void ImpalaServer::query(QueryHandle& query_handle, const Query& query)
这个Execute()函数首先是通过JNI向impala-fe请求SQL解析和执行计划生成(已经在上一篇文章中讲了这个过程),得到该Query对应的TExecRequest对象,交由impala-backend执行。
从下面这个函数开始backend执行,同时开始fragment status report。
Status ImpalaServer::QueryExecState::Exec(TExecRequest* exec_request)
因为我们知道在impala里面,一个Query是分配到多个节点执行的,我们把其中负责分配和协调这个Query执行的组件叫Coordinator;参与这个Query执行的每个节点叫backend instance,每个backend instance上面会执行一个或者多个PlanFragment。那么每个Query就对应一个Coordinator对象和多个backend instance,同时Coordinator中的query_profile_ 变量是用来统计这个query的执行的整个profile的。
这里首先生成Coordinator用于协调这个Query的执行,然后调用
Status?Coordinator::Exec(
const TUniqueId& query_id, TQueryExecRequest* request,
const TQueryOptions& query_options)
启动异步的执行过程:说白了这个Coordinator就是老板,把活(PlanFragment)都给各个下属(backend instance)安排好了,发出去,然后自己下班走人了,才不会等着下属干完了才走呢。因为老板早就安排好自己的秘书(ImpalaServer::Wait())去盯着结果呢。
这个函数里面最重要的两个步骤:
其中ComputeScanRangeAssignment(const TQueryExecRequest& exec_request)?用于填充std::vector
typedef boost::unordered_map
另外一个函数ComputeFragmentExecParams?(const TQueryExecRequest& exec_request)?用于填充std::vector
回到Coordinator::Exec()函数中,下面就该把各个PlanFragment分配干活了。
Status fragments_exec_status = ParallelExecutor::Exec(
bind
reinterpret_cast
num_hosts);
每个Coordinator,PlanFragmentExecutor和ExecNode都会有一个RuntimeProfile,所有的RuntimeProfile会构成树状结构来记录每个执行节点的执行过程中的信息。
在Coordinator有个成员变量boost::scoped_ptr
每个Coordinator还有个aggregate_profile_专门负责aggregate相关的profile。
无论是在Coordinator端还是在backend instance端执行的PlanFragment都是由一个PlanFragmentExecutor控制的。下面我们看看PlanFragment在backend instance是怎么执行的?
在RPC的server端调用了ImpalaServer::ExecPlanFragment()->ImpalaServer::StartPlanFragmentExecution()
生成FragmentExecState里面含有一个PlanFragmentExecutor。那么下面就是分析PlanFragmentExecutor怎么控制Query的执行的了。
真正控制PlanFragment执行的是PlanFragmentExecutor,主要由Prepare()/Open()/GetNext()/Close()这几个函数组成。
1,? PlanFragmentExecutor::Prepare(TExecPlanFragmentParams):准备执行,主要流程如下:
2,PlanFragmentExecutor::Open()
先是start the profile-reporting thread,然后调用OpenInternal()
(1)???? 调用plan_->Open()沿着生成的ExecNode执行树依次调用ExecNode:: Open()
下面以HdfsScanNode::Open()为例说明:
(2)???? 如果当前这个PlanFragmen有sink,那么需要把这个PlanFragment要发给其他PF的数据都发出去。在发出去之前肯定得获取要发的东西吧,调用PlanFragmentExecutor ::GetNextInternal()从上到下递归调用执行树的ExecNode::GetNext()获取执行结果。
上面说到对于ExecNode::Open()不同种类的ExecNode的逻辑是不一样的,对于GetNext()也是一样的,可以参考下HdfsScanNode::GetNext()或者HashJoinNode::GetNext()看看具体是怎么获取查询结果的。
3,? PlanFragmentExecutor::GextNext(RowBatch** batch)
显示触发执行树的ExecNode::GetNext()函数获取查询结果。当其标记PlanFragmentExecutor::done_==true时,则表明所有数据已经被处理完,该PlanFragmentExecutor可以退出了。
至此,impala-backend也分析完了。总的来说impala在执行过程中和MapReduce及Hive的不同可以概括为一拉一推。
原文地址:Impala源代码分析(3)-backend查询执行过程, 感谢原作者分享。