By Jeremy Mikola, 10gen software engineer and maintainer of Doctrine MongoDB ODM. It seems that GeoJSON is all the rage these days. Last month, Ian Bentley shared a bit about the new geospatial features in MongoDB 2.4. Derick Rethans, one
By Jeremy Mikola, 10gen software engineer and maintainer of Doctrine MongoDB ODM.
It seems that GeoJSON is all the rage these days. Last month, Ian Bentley shared a bit about the new geospatial features in MongoDB 2.4. Derick Rethans, one of my PHP driver teammates and a renowned OpenStreetMap aficionado, recently blogged about importing OSM data into MongoDB as GeoJSON objects. A few days later, GitHub added support for rendering .geojson
files in repositories, using a combination of Leaflet.js, MapBox, and OpenStreetMap data. Coincidentally, I visited a local CloudCamp meetup last week to present on geospatial data, and for the past two weeks I’ve been working on adding support for MongoDB 2.4’s geospatial query operators to Doctrine MongoDB.
Doctrine MongoDB is an abstraction for the PHP driver that provides a fluent query builder API among other useful features. It’s used internally by Doctrine MongoDB ODM, but is completely usable on its own. One of the challenges in developing the library has been supporting multiple versions of MongoDB and the PHP driver. The introduction of read preferences last year is one such example. We wanted to still allow users to set slaveOk
bits for older server and driver versions, but allow read preferences to apply for newer versions, all without breaking our API and abiding by semantic versioning. Now, the setSlaveOkay()
method in Doctrine MongoDB will invoke setReadPreference()
if it exists in the driver, and fall back to the deprecated setSlaveOkay()
driver method otherwise.
Query Builder API
Before diving into the geospatial changes for Doctrine MongoDB, let’s take a quick look at the query builder API. Suppose we had a collection, test.places
, with some OpenStreetMap annotations (key=value
strings) stored in a tags
array and a loc
field containing longitude/latitude coordinates in MongoDB’s legacy point format (a float tuple) for a 2d
index. Doctrine’s API allows queries to be constructed like so:
$connection = new \Doctrine\MongoDB\Connection(); $collection = $connection->selectCollection('test', 'places'); $qb = $collection->createQueryBuilder() ->field('loc') ->near(-73.987415, 40.757113) ->maxDistance(0.00899928); ->field('tags') ->equals('amenity=restaurant'); $cursor = $qb->getQuery()->execute();
This above example executes the following query:
{ "loc": { "$near": [-73.987415, 40.757113], "$maxDistance": 0.00899928 }, "tags": "amenity=restaurant" }
This simple query will return restaurants within half a kilometer of 10gen’s NYC office at 229 West 43rd Street. If only it was so easy to find good restaurants near Times Square!
Supporting New and Old Geospatial Queries
When the new 2dsphere
index type was introduced in MongoDB 2.4, operators such $near
and $geoWithin
were changed to accept GeoJSON geometry objects in addition to their legacy point and shape arguments. $near
was particularly problematic because of its optional $maxDistance
argument. As shown above, $maxDistance
previously sat alongside $near
and was measured in radians. It now sits within $near
and is measured in meters. Using a 2dsphere
index and GeoJSON points, the same query takes on a whole new shape:
{ "loc": { "$near": { "$geometry": { "type": "Point", "coordinates" [-73.987415, 40.757113] }, "$maxDistance": 500 } }, "tags": "amenity=restaurant" }
This posed a hurdle for Doctrine MongoDB’s query builder, because we wanted to support 2dsphere
queries without drastically changing the API. Unfortunately, there was no obvious way for near()
to discern whether a pair of floats denoted a legacy or GeoJSON point, or whether a number signified radians or meters in the case of maxDistance()
. I also anticipated we might run into a similar quandry for the $geoWithin
builder method, which accepts an array of point coordinates.
Method overloading seemed preferable to creating separate builder methods or introducing a new “mode” parameter to handle 2dsphere
queries. Although PHP has no language-level support for overloading, it is commonly implemented by inspecting an argument’s type at runtime. In our case, this would necessitate having classes for GeoJSON geometries (e.g. Point, LineString, Polygon), which we could differentiate from the legacy geometry arrays.
Introducing a GeoJSON Library for PHP
A cursory search for GeoJSON PHP libraries turned up php-geojson, from the MapFish project, and geoPHP. I was pleased to see that geoPHP was available via Composer (PHP’s de facto package manager), but neither library implemented the GeoJSON spec in its entirety. This seemed like a ripe opportunity to create such a library, and so geojson was born a few days later.
At the time of this writing, 2dsphere
support for Doctrine’s query builder is still being developed; however, I envision it will take the following form when complete:
use GeoJson\Geometry\Point; // ... $qb = $collection->createQueryBuilder() ->field('loc') ->near(new Point([-73.987415, 40.757113])) ->maxDistance(0.00899928); ->field('tags') ->equals('amenity=restaurant');
All of the GeoJson classes implement JsonSerializable, one of the newer interfaces introduced in PHP 5.4, which will allow Doctrine to prepare them for MongoDB queries with a single method call. One clear benefit over the legacy geometry arrays is that the GeoJson library performs its own validation. When a Polygon is passed to geoWithin()
, Doctrine won’t have to worry about whether all of its rings are closed LineStrings; the library would catch such an error in the constructor. This helps achieve a separation of concerns, which in turn increases the maintainability of both libraries.
I look forward to finishing up 2dsphere
support for Doctrine MongoDB in the coming weeks. In the meantime, if you happen to fall in the fabled demographic of PHP developers in need of a full GeoJSON implementation, please give geojson a look and share some feedback.
原文地址:2dsphere, GeoJSON, and Doctrine MongoDB, 感谢原作者分享。

InnoDBBufferPool reduces disk I/O by caching data and indexing pages, improving database performance. Its working principle includes: 1. Data reading: Read data from BufferPool; 2. Data writing: After modifying the data, write to BufferPool and refresh it to disk regularly; 3. Cache management: Use the LRU algorithm to manage cache pages; 4. Reading mechanism: Load adjacent data pages in advance. By sizing the BufferPool and using multiple instances, database performance can be optimized.

Compared with other programming languages, MySQL is mainly used to store and manage data, while other languages such as Python, Java, and C are used for logical processing and application development. MySQL is known for its high performance, scalability and cross-platform support, suitable for data management needs, while other languages have advantages in their respective fields such as data analytics, enterprise applications, and system programming.

MySQL is worth learning because it is a powerful open source database management system suitable for data storage, management and analysis. 1) MySQL is a relational database that uses SQL to operate data and is suitable for structured data management. 2) The SQL language is the key to interacting with MySQL and supports CRUD operations. 3) The working principle of MySQL includes client/server architecture, storage engine and query optimizer. 4) Basic usage includes creating databases and tables, and advanced usage involves joining tables using JOIN. 5) Common errors include syntax errors and permission issues, and debugging skills include checking syntax and using EXPLAIN commands. 6) Performance optimization involves the use of indexes, optimization of SQL statements and regular maintenance of databases.

MySQL is suitable for beginners to learn database skills. 1. Install MySQL server and client tools. 2. Understand basic SQL queries, such as SELECT. 3. Master data operations: create tables, insert, update, and delete data. 4. Learn advanced skills: subquery and window functions. 5. Debugging and optimization: Check syntax, use indexes, avoid SELECT*, and use LIMIT.

MySQL efficiently manages structured data through table structure and SQL query, and implements inter-table relationships through foreign keys. 1. Define the data format and type when creating a table. 2. Use foreign keys to establish relationships between tables. 3. Improve performance through indexing and query optimization. 4. Regularly backup and monitor databases to ensure data security and performance optimization.

MySQL is an open source relational database management system that is widely used in Web development. Its key features include: 1. Supports multiple storage engines, such as InnoDB and MyISAM, suitable for different scenarios; 2. Provides master-slave replication functions to facilitate load balancing and data backup; 3. Improve query efficiency through query optimization and index use.

SQL is used to interact with MySQL database to realize data addition, deletion, modification, inspection and database design. 1) SQL performs data operations through SELECT, INSERT, UPDATE, DELETE statements; 2) Use CREATE, ALTER, DROP statements for database design and management; 3) Complex queries and data analysis are implemented through SQL to improve business decision-making efficiency.

The basic operations of MySQL include creating databases, tables, and using SQL to perform CRUD operations on data. 1. Create a database: CREATEDATABASEmy_first_db; 2. Create a table: CREATETABLEbooks(idINTAUTO_INCREMENTPRIMARYKEY, titleVARCHAR(100)NOTNULL, authorVARCHAR(100)NOTNULL, published_yearINT); 3. Insert data: INSERTINTObooks(title, author, published_year)VA


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

SecLists
SecLists is the ultimate security tester's companion. It is a collection of various types of lists that are frequently used during security assessments, all in one place. SecLists helps make security testing more efficient and productive by conveniently providing all the lists a security tester might need. List types include usernames, passwords, URLs, fuzzing payloads, sensitive data patterns, web shells, and more. The tester can simply pull this repository onto a new test machine and he will have access to every type of list he needs.

EditPlus Chinese cracked version
Small size, syntax highlighting, does not support code prompt function

Zend Studio 13.0.1
Powerful PHP integrated development environment

SublimeText3 English version
Recommended: Win version, supports code prompts!

PhpStorm Mac version
The latest (2018.2.1) professional PHP integrated development tool