笔者在工作实践中发现,不良的SQL往往来自于不恰当的索引设计、不充份的连接条件和不可优化的where子句。以下就对数据库优化问题进行了介绍,需要的朋友可以参考下 人 下面将从这三个方面分别进行总结: select count(*) from record where date '19991201'
笔者在工作实践中发现,不良的SQL往往来自于不恰当的索引设计、不充份的连接条件和不可优化的where子句。以下就对数据库优化问题进行了介绍,需要的朋友可以参考下
人
下面将从这三个方面分别进行总结:
select count(*) from record where date >'19991201' and date 2000 (25秒)
select date ,sum(amount) from record group by date(55秒)
select count(*) from record where date >'19990901' and place in ('BJ','SH') (27秒)
select count(*) from record where date >'19991201' and date 2000 (14秒)
select date,sum(amount) from record group by date(28秒)
select count(*) from record where date >'19990901' and place in ('BJ','SH')(14秒)
select count(*) from record where date >'19991201' and date 2000 (26秒)
select date,sum(amount) from record group by date(27秒)
select count(*) from record where date >'19990901' and place in ('BJ, 'SH')(
select count(*) from record where date >'19991201' and date 2000(
select date,sum(amount) from record group by date(11秒)
select count(*) from record where date >'19990901' and place in ('BJ','SH')(
---- 5.总结:----
select sum(a.amount) from account a,card b where a.card_no = b.card_no(20秒)
select sum(a.amount) from account a,card b where a.card_no = b.card_no and a.account_no=b.account_no(
总结:
select * from record wheresubstring(card_no,1,4)='5378'(13秒)
select * from record whereamount/30
select * from record whereconvert(char(10),date,112)='19991201'(10秒)
分析:
select * from record where card_no like'5378%'(
select * from record where amount
select * from record where date= '1999/12/01'(
select count(*) from stuff where id_no in('0','1')(23秒)
select count(*) from stuff where id_no='0'select count(*) from stuff where id_no='1'
create proc count_stuff asdeclare @a intdeclare @b intdeclare @c intdeclare @d char(10)beginselect @a=count(*) from stuff where id_no='0'select @b=count(*) from stuff where id_no='1'endselect @c=@a+@bselect @d=convert(char(10),@c)print @d
---- 总结:----
1、开发人员如果用到其他库的Table或View,务必在当前库中建立View来实现跨库操作,最好不要直接使用“databse.dbo.table_name”,因为sp_depends不能显示出该SP所使用的跨库table或view,不方便校验。
2、开发人员在提交SP前,必须已经使用set showplan on分析过查询计划,做过自身的查询优化检查。
3、高程序运行效率,优化应用程序,在SP编写过程中应该注意以下几点:
a) SQL的使用规范:
i. 尽量避免大事务操作,慎用holdlock子句,提高系统并发能力。
ii. 尽量避免反复访问同一张或几张表,尤其是数据量较大的表,可以考虑先根据条件提取数据到临时表中,然后再做连接。
iii. 尽量避免使用游标,因为游标的效率较差,如果游标操作的数据超过1万行,那么就应该改写;如果使用了游标,就要尽量避免在游标循环中再进行表连接的操作。
iv. 注意where字句写法,必须考虑语句顺序,应该根据索引顺序、范围大小来确定条件子句的前后顺序,尽可能的让字段顺序与索引顺序相一致,,范围从大到小。
v. 不要在where子句中的“=”左边进行函数、算术运算或其他表达式运算,否则系统将可能无法正确使用索引。
vi. 尽量使用exists代替select count(1)来判断是否存在记录,count函数只有在统计表中所有行数时使用,而且count(1)比count(*)更有效率。
vii. 尽量使用“>=”,不要使用“>”。
viii. 注意一些or子句和union子句之间的替换
ix. 注意表之间连接的数据类型,避免不同类型数据之间的连接。
x. 注意存储过程中参数和数据类型的关系。
xi. 注意insert、update操作的数据量,防止与其他应用冲突。如果数据量超过200个数据页面(400k),那么系统将会进行锁升级,页级锁会升级成表级锁。
b) 索引的使用规范:
i. 索引的创建要与应用结合考虑,建议大的OLTP表不要超过6个索引。
ii. 尽可能的使用索引字段作为查询条件,尤其是聚簇索引,必要时可以通过index index_name来强制指定索引
iii. 避免对大表查询时进行table scan,必要时考虑新建索引。
iv. 在使用索引字段作为条件时,如果该索引是联合索引,那么必须使用到该索引中的第一个字段作为条件时才能保证系统使用该索引,否则该索引将不会被使用。
v. 要注意索引的维护,周期性重建索引,重新编译存储过程。
c) tempdb的使用规范:
i. 尽量避免使用distinct、order by、group by、having、join、***pute,因为这些语句会加重tempdb的负担。
ii. 避免频繁创建和删除临时表,减少系统表资源的消耗。
iii. 在新建临时表时,如果一次性插入数据量很大,那么可以使用select into代替create table,避免log,提高速度;如果数据量不大,为了缓和系统表的资源,建议先create table,然后insert。
iv. 如果临时表的数据量较大,需要建立索引,那么应该将创建临时表和建立索引的过程放在单独一个子存储过程中,这样才能保证系统能够很好的使用到该临时表的索引。
v. 如果使用到了临时表,在存储过程的最后务必将所有的临时表显式删除,先truncate table,然后drop table,这样可以避免系统表的较长时间锁定。
vi. 慎用大的临时表与其他大表的连接查询和修改,减低系统表负担,因为这种操作会在一条语句中多次使用tempdb的系统表。
d) 合理的算法使用:

Stored procedures are precompiled SQL statements in MySQL for improving performance and simplifying complex operations. 1. Improve performance: After the first compilation, subsequent calls do not need to be recompiled. 2. Improve security: Restrict data table access through permission control. 3. Simplify complex operations: combine multiple SQL statements to simplify application layer logic.

The working principle of MySQL query cache is to store the results of SELECT query, and when the same query is executed again, the cached results are directly returned. 1) Query cache improves database reading performance and finds cached results through hash values. 2) Simple configuration, set query_cache_type and query_cache_size in MySQL configuration file. 3) Use the SQL_NO_CACHE keyword to disable the cache of specific queries. 4) In high-frequency update environments, query cache may cause performance bottlenecks and needs to be optimized for use through monitoring and adjustment of parameters.

The reasons why MySQL is widely used in various projects include: 1. High performance and scalability, supporting multiple storage engines; 2. Easy to use and maintain, simple configuration and rich tools; 3. Rich ecosystem, attracting a large number of community and third-party tool support; 4. Cross-platform support, suitable for multiple operating systems.

The steps for upgrading MySQL database include: 1. Backup the database, 2. Stop the current MySQL service, 3. Install the new version of MySQL, 4. Start the new version of MySQL service, 5. Recover the database. Compatibility issues are required during the upgrade process, and advanced tools such as PerconaToolkit can be used for testing and optimization.

MySQL backup policies include logical backup, physical backup, incremental backup, replication-based backup, and cloud backup. 1. Logical backup uses mysqldump to export database structure and data, which is suitable for small databases and version migrations. 2. Physical backups are fast and comprehensive by copying data files, but require database consistency. 3. Incremental backup uses binary logging to record changes, which is suitable for large databases. 4. Replication-based backup reduces the impact on the production system by backing up from the server. 5. Cloud backups such as AmazonRDS provide automation solutions, but costs and control need to be considered. When selecting a policy, database size, downtime tolerance, recovery time, and recovery point goals should be considered.

MySQLclusteringenhancesdatabaserobustnessandscalabilitybydistributingdataacrossmultiplenodes.ItusestheNDBenginefordatareplicationandfaulttolerance,ensuringhighavailability.Setupinvolvesconfiguringmanagement,data,andSQLnodes,withcarefulmonitoringandpe

Optimizing database schema design in MySQL can improve performance through the following steps: 1. Index optimization: Create indexes on common query columns, balancing the overhead of query and inserting updates. 2. Table structure optimization: Reduce data redundancy through normalization or anti-normalization and improve access efficiency. 3. Data type selection: Use appropriate data types, such as INT instead of VARCHAR, to reduce storage space. 4. Partitioning and sub-table: For large data volumes, use partitioning and sub-table to disperse data to improve query and maintenance efficiency.

TooptimizeMySQLperformance,followthesesteps:1)Implementproperindexingtospeedupqueries,2)UseEXPLAINtoanalyzeandoptimizequeryperformance,3)Adjustserverconfigurationsettingslikeinnodb_buffer_pool_sizeandmax_connections,4)Usepartitioningforlargetablestoi


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

ZendStudio 13.5.1 Mac
Powerful PHP integrated development environment

DVWA
Damn Vulnerable Web App (DVWA) is a PHP/MySQL web application that is very vulnerable. Its main goals are to be an aid for security professionals to test their skills and tools in a legal environment, to help web developers better understand the process of securing web applications, and to help teachers/students teach/learn in a classroom environment Web application security. The goal of DVWA is to practice some of the most common web vulnerabilities through a simple and straightforward interface, with varying degrees of difficulty. Please note that this software

mPDF
mPDF is a PHP library that can generate PDF files from UTF-8 encoded HTML. The original author, Ian Back, wrote mPDF to output PDF files "on the fly" from his website and handle different languages. It is slower than original scripts like HTML2FPDF and produces larger files when using Unicode fonts, but supports CSS styles etc. and has a lot of enhancements. Supports almost all languages, including RTL (Arabic and Hebrew) and CJK (Chinese, Japanese and Korean). Supports nested block-level elements (such as P, DIV),

SublimeText3 English version
Recommended: Win version, supports code prompts!

MantisBT
Mantis is an easy-to-deploy web-based defect tracking tool designed to aid in product defect tracking. It requires PHP, MySQL and a web server. Check out our demo and hosting services.
