search
HomeDatabaseMysql TutorialAlex的Hadoop菜鸟教程:第10课Hive入门教程

Hive 安装 相比起很多教程先介绍概念,我喜欢先动手装上,然后用例子来介绍概念。我们先来安装一下Hive 先确认是否已经安装了对应的yum源,如果没有照这个教程里面写的安装cdh的yum源http://blog.csdn.net/nsrainbow/article/details/36629339 Hive是什么 Hi


Hive 安装

相比起很多教程先介绍概念,我喜欢先动手装上,然后用例子来介绍概念。我们先来安装一下Hive

先确认是否已经安装了对应的yum源,如果没有照这个教程里面写的安装cdh的yum源http://blog.csdn.net/nsrainbow/article/details/36629339


Hive是什么

Hive 提供了一个让大家可以使用sql去查询数据的途径。但是最好不要拿Hive进行实时的查询。因为Hive的实现原理是把sql语句转化为多个Map Reduce任务所以Hive非常慢,官方文档说Hive 适用于高延时性的场景而且很费资源。

举个简单的例子,可以像这样去查询

hive> select * from h_employee;
OK
1	1	peter
2	2	paul
Time taken: 9.289 seconds, Fetched: 2 row(s)

这个h_employee不一定是一个数据库表

metastore

Hive 中建立的表都叫metastore表。这些表并不真实的存储数据,而是定义真实数据跟hive之间的映射,就像传统数据库中表的meta信息,所以叫做metastore。实际存储的时候可以定义的存储模式有四种:

内部表(默认)分区表桶表外部表 举个例子,这是一个简历内部表的语句
CREATE TABLE worker(id INT, name STRING)
ROW FORMAT DELIMITED FIELDS TERMINATED BY '\054';

这个语句的意思是建立一个worker的内部表,内部表是默认的类型,所以不用写存储的模式。并且使用逗号作为分隔符存储

建表语句支持的类型

基本数据类型
tinyint / smalint / int /bigint
float / double
boolean
string

复杂数据类型
Array/Map/Struct

没有date /datetime

建完的表存在哪里呢?

在 /user/hive/warehouse 里面,可以通过hdfs来查看建完的表位置
$ hdfs dfs -ls /user/hive/warehouse
Found 11 items
drwxrwxrwt   - root     supergroup          0 2014-12-02 14:42 /user/hive/warehouse/h_employee
drwxrwxrwt   - root     supergroup          0 2014-12-02 14:42 /user/hive/warehouse/h_employee2
drwxrwxrwt   - wlsuser  supergroup          0 2014-12-04 17:21 /user/hive/warehouse/h_employee_export
drwxrwxrwt   - root     supergroup          0 2014-08-18 09:20 /user/hive/warehouse/h_http_access_logs
drwxrwxrwt   - root     supergroup          0 2014-06-30 10:15 /user/hive/warehouse/hbase_apache_access_log
drwxrwxrwt   - username supergroup          0 2014-06-27 17:48 /user/hive/warehouse/hbase_table_1
drwxrwxrwt   - username supergroup          0 2014-06-30 09:21 /user/hive/warehouse/hbase_table_2
drwxrwxrwt   - username supergroup          0 2014-06-30 09:43 /user/hive/warehouse/hive_apache_accesslog
drwxrwxrwt   - root     supergroup          0 2014-12-02 15:12 /user/hive/warehouse/hive_employee

一个文件夹对应一个metastore表

Hive 各种类型表使用

内部表

CREATE TABLE workers( id INT, name STRING)  
ROW FORMAT DELIMITED FIELDS TERMINATED BY '\054';

通过这样的语句就建立了一个内部表叫 workers,并且分隔符是逗号, \054 是ASCII 码
我们可以通过 show tables; 来看看有多少表,其实hive的很多语句是模仿mysql的,当你们不知道语句的时候,把mysql的语句拿来基本可以用。除了limit比较怪,这个后面会说
hive> show tables;
OK
h_employee
h_employee2
h_employee_export
h_http_access_logs
hive_employee
workers
Time taken: 0.371 seconds, Fetched: 6 row(s)


建立完后,我们试着插入几条数据。这边要告诉大家Hive不支持单句插入的语句,必须批量,所以不要指望能用insert into workers values (1,'jack') 这样的语句插入数据。hive支持的插入数据的方式有两种: 从文件读取数据从别的表读出数据插入(insert from select) 这里我采用从文件读数据进来。先建立一个叫 worker.csv的文件
$ cat workers.csv
1,jack
2,terry
3,michael

用LOAD DATA 导入到Hive的表中
hive> LOAD DATA LOCAL INPATH '/home/alex/workers.csv' INTO TABLE workers;
Copying data from file:/home/alex/workers.csv
Copying file: file:/home/alex/workers.csv
Loading data to table default.workers
Table default.workers stats: [num_partitions: 0, num_files: 1, num_rows: 0, total_size: 25, raw_data_size: 0]
OK
Time taken: 0.655 seconds

注意 不要少了那个 LOCAL , LOAD DATA LOCAL INPATH 跟 LOAD DATA INPATH 的区别是一个是从你本地磁盘上找源文件,一个是从hdfs上找文件如果加上OVERWRITE可以再导入之前先清空表,比如 LOAD DATA LOCAL INPATH '/home/alex/workers.csv' OVERWRITE INTO TABLE workers; 查询一下数据
hive> select * from workers;
OK
1	jack
2	terry
3	michael
Time taken: 0.177 seconds, Fetched: 3 row(s)

我们去看下导入后在hive内部表是怎么存的
# hdfs dfs -ls /user/hive/warehouse/workers/
Found 1 items
-rwxrwxrwt   2 root supergroup         25 2014-12-08 15:23 /user/hive/warehouse/workers/workers.csv

原来就是原封不动的把文件拷贝进去啊!就是这么土! 我们可以试验再放一个文件 workers2.txt (我故意把扩展名换一个,其实hive是不看扩展名的)
# cat workers2.txt 
4,peter
5,kate
6,ted

导入
hive> LOAD DATA LOCAL INPATH '/home/alex/workers2.txt' INTO TABLE workers;
Copying data from file:/home/alex/workers2.txt
Copying file: file:/home/alex/workers2.txt
Loading data to table default.workers
Table default.workers stats: [num_partitions: 0, num_files: 2, num_rows: 0, total_size: 46, raw_data_size: 0]
OK
Time taken: 0.79 seconds

去看下文件的存储结构
# hdfs dfs -ls /user/hive/warehouse/workers/
Found 2 items
-rwxrwxrwt   2 root supergroup         25 2014-12-08 15:23 /user/hive/warehouse/workers/workers.csv
-rwxrwxrwt   2 root supergroup         21 2014-12-08 15:29 /user/hive/warehouse/workers/workers2.txt

多出来一个workers2.txt 再用sql查询下
hive> select * from workers;
OK
1	jack
2	terry
3	michael
4	peter
5	kate
6	ted
Time taken: 0.144 seconds, Fetched: 6 row(s)

分区表

分区表是用来加速查询的,比如你的数据非常多,但是你的应用场景是基于这些数据做日报表,那你就可以根据日进行分区,当你要做2014-05-05的报表的时候只需要加载2014-05-05这一天的数据就行了。我们来创建一个分区表来看下
create table partition_employee(id int, name string) 
partitioned by(daytime string) 
row format delimited fields TERMINATED BY '\054';

可以看到分区的属性,并不是任何一个列 我们先建立2个测试数据文件,分别对应两天的数据
# cat 2014-05-05
22,kitty
33,lily
# cat 2014-05-06
14,sami
45,micky

导入到分区表里面
hive> LOAD DATA LOCAL INPATH '/home/alex/2014-05-05' INTO TABLE partition_employee partition(daytime='2014-05-05');
Copying data from file:/home/alex/2014-05-05
Copying file: file:/home/alex/2014-05-05
Loading data to table default.partition_employee partition (daytime=2014-05-05)
Partition default.partition_employee{daytime=2014-05-05} stats: [num_files: 1, num_rows: 0, total_size: 21, raw_data_size: 0]
Table default.partition_employee stats: [num_partitions: 1, num_files: 1, num_rows: 0, total_size: 21, raw_data_size: 0]
OK
Time taken: 1.154 seconds
hive> LOAD DATA LOCAL INPATH '/home/alex/2014-05-06' INTO TABLE partition_employee partition(daytime='2014-05-06');
Copying data from file:/home/alex/2014-05-06
Copying file: file:/home/alex/2014-05-06
Loading data to table default.partition_employee partition (daytime=2014-05-06)
Partition default.partition_employee{daytime=2014-05-06} stats: [num_files: 1, num_rows: 0, total_size: 21, raw_data_size: 0]
Table default.partition_employee stats: [num_partitions: 2, num_files: 2, num_rows: 0, total_size: 42, raw_data_size: 0]
OK
Time taken: 0.763 seconds

导入的时候通过 partition 来指定分区。
查询的时候通过指定分区来查询
hive> select * from partition_employee where daytime='2014-05-05';
OK
22	kitty	2014-05-05
33	lily	2014-05-05
Time taken: 0.173 seconds, Fetched: 2 row(s)

我的查询语句并没有什么特别的语法,hive 会自动判断你的where语句中是否包含分区的字段。而且可以使用大于小于等运算符
hive> select * from partition_employee where daytime>='2014-05-05';
OK
22	kitty	2014-05-05
33	lily	2014-05-05
14	sami	2014-05-06
45	mick'	2014-05-06
Time taken: 0.273 seconds, Fetched: 4 row(s)

我们去看看存储的结构
# hdfs dfs -ls /user/hive/warehouse/partition_employee
Found 2 items
drwxrwxrwt   - root supergroup          0 2014-12-08 15:57 /user/hive/warehouse/partition_employee/daytime=2014-05-05
drwxrwxrwt   - root supergroup          0 2014-12-08 15:57 /user/hive/warehouse/partition_employee/daytime=2014-05-06

我们试试二维的分区表
create table p_student(id int, name string) 
partitioned by(daytime string,country string) 
row format delimited fields TERMINATED BY '\054';

查入一些数据
# cat 2014-09-09-CN 
1,tammy
2,eric
# cat 2014-09-10-CN 
3,paul
4,jolly
# cat 2014-09-10-EN 
44,ivan
66,billy

导入hive
hive> LOAD DATA LOCAL INPATH '/home/alex/2014-09-09-CN' INTO TABLE p_student partition(daytime='2014-09-09',country='CN');
Copying data from file:/home/alex/2014-09-09-CN
Copying file: file:/home/alex/2014-09-09-CN
Loading data to table default.p_student partition (daytime=2014-09-09, country=CN)
Partition default.p_student{daytime=2014-09-09, country=CN} stats: [num_files: 1, num_rows: 0, total_size: 19, raw_data_size: 0]
Table default.p_student stats: [num_partitions: 1, num_files: 1, num_rows: 0, total_size: 19, raw_data_size: 0]
OK
Time taken: 0.736 seconds
hive> LOAD DATA LOCAL INPATH '/home/alex/2014-09-10-CN' INTO TABLE p_student partition(daytime='2014-09-10',country='CN');
Copying data from file:/home/alex/2014-09-10-CN
Copying file: file:/home/alex/2014-09-10-CN
Loading data to table default.p_student partition (daytime=2014-09-10, country=CN)
Partition default.p_student{daytime=2014-09-10, country=CN} stats: [num_files: 1, num_rows: 0, total_size: 19, raw_data_size: 0]
Table default.p_student stats: [num_partitions: 2, num_files: 2, num_rows: 0, total_size: 38, raw_data_size: 0]
OK
Time taken: 0.691 seconds
hive> LOAD DATA LOCAL INPATH '/home/alex/2014-09-10-EN' INTO TABLE p_student partition(daytime='2014-09-10',country='EN');
Copying data from file:/home/alex/2014-09-10-EN
Copying file: file:/home/alex/2014-09-10-EN
Loading data to table default.p_student partition (daytime=2014-09-10, country=EN)
Partition default.p_student{daytime=2014-09-10, country=EN} stats: [num_files: 1, num_rows: 0, total_size: 21, raw_data_size: 0]
Table default.p_student stats: [num_partitions: 3, num_files: 3, num_rows: 0, total_size: 59, raw_data_size: 0]
OK
Time taken: 0.622 seconds

看看存储结构
# hdfs dfs -ls /user/hive/warehouse/p_student
Found 2 items
drwxr-xr-x   - root supergroup          0 2014-12-08 16:10 /user/hive/warehouse/p_student/daytime=2014-09-09
drwxr-xr-x   - root supergroup          0 2014-12-08 16:10 /user/hive/warehouse/p_student/daytime=2014-09-10
# hdfs dfs -ls /user/hive/warehouse/p_student/daytime=2014-09-09
Found 1 items
drwxr-xr-x   - root supergroup          0 2014-12-08 16:10 /user/hive/warehouse/p_student/daytime=2014-09-09/country=CN

查询一下数据
hive> select * from p_student;
OK
1	tammy	2014-09-09	CN
2	eric	2014-09-09	CN
3	paul	2014-09-10	CN
4	jolly	2014-09-10	CN
44	ivan	2014-09-10	EN
66	billy	2014-09-10	EN
Time taken: 0.228 seconds, Fetched: 6 row(s)
hive> select * from p_student where daytime='2014-09-10' and country='EN';
OK
44	ivan	2014-09-10	EN
66	billy	2014-09-10	EN
Time taken: 0.224 seconds, Fetched: 2 row(s)

桶表

桶表是根据某个字段的hash值,来将数据扔到不同的“桶”里面。外国人有个习惯,就是分类东西的时候摆几个桶,上面贴不同的标签,所以他们取名的时候把这种表形象的取名为桶表。桶表表专门用于采样分析
下面这个例子是官网教程直接拷贝下来的,因为分区表跟桶表是可以同时使用的,所以这个例子中同时使用了分区跟桶两种特性
CREATE TABLE b_student(id INT, name STRING)
PARTITIONED BY(dt STRING, country STRING)
CLUSTERED BY(id) SORTED BY(name) INTO 4 BUCKETS
row format delimited 
    fields TERMINATED BY '\054';


意思是根据userid来进行计算hash值,用viewTIme来排序存储 做数据跟导入的过程我就不在赘述了,这是导入后的数据
hive> select * from b_student;
OK
1	tammy	2014-09-09	CN
2	eric	2014-09-09	CN
3	paul	2014-09-10	CN
4	jolly	2014-09-10	CN
34	allen	2014-09-11	EN
Time taken: 0.727 seconds, Fetched: 5 row(s)

从4个桶中采样抽取一个桶的数据
hive> select * from b_student tablesample(bucket 1 out of 4 on id);
Total MapReduce jobs = 1
Launching Job 1 out of 1
Number of reduce tasks is set to 0 since there's no reduce operator
Starting Job = job_1406097234796_0041, Tracking URL = http://hadoop01:8088/proxy/application_1406097234796_0041/
Kill Command = /usr/lib/hadoop/bin/hadoop job  -kill job_1406097234796_0041
Hadoop job information for Stage-1: number of mappers: 1; number of reducers: 0
2014-12-08 17:35:56,995 Stage-1 map = 0%,  reduce = 0%
2014-12-08 17:36:06,783 Stage-1 map = 100%,  reduce = 0%, Cumulative CPU 2.9 sec
2014-12-08 17:36:07,845 Stage-1 map = 100%,  reduce = 0%, Cumulative CPU 2.9 sec
MapReduce Total cumulative CPU time: 2 seconds 900 msec
Ended Job = job_1406097234796_0041
MapReduce Jobs Launched: 
Job 0: Map: 1   Cumulative CPU: 2.9 sec   HDFS Read: 482 HDFS Write: 22 SUCCESS
Total MapReduce CPU Time Spent: 2 seconds 900 msec
OK
4	jolly	2014-09-10	CN

外部表

外部表就是存储不是由hive来存储的,比如可以依赖Hbase来存储,hive只是做一个映射而已。我用Hbase来举例
先建立一张Hbase表叫 employee
hbase(main):005:0> create 'employee','info'  
0 row(s) in 0.4740 seconds  
  
=> Hbase::Table - employee  
hbase(main):006:0> put 'employee',1,'info:id',1  
0 row(s) in 0.2080 seconds  
  
hbase(main):008:0> scan 'employee'  
ROW                                      COLUMN+CELL                                                                                                             
 1                                       column=info:id, timestamp=1417591291730, value=1                                                                        
1 row(s) in 0.0610 seconds  
  
hbase(main):009:0> put 'employee',1,'info:name','peter'  
0 row(s) in 0.0220 seconds  
  
hbase(main):010:0> scan 'employee'  
ROW                                      COLUMN+CELL                                                                                                             
 1                                       column=info:id, timestamp=1417591291730, value=1                                                                        
 1                                       column=info:name, timestamp=1417591321072, value=peter                                                                  
1 row(s) in 0.0450 seconds  
  
hbase(main):011:0> put 'employee',2,'info:id',2  
0 row(s) in 0.0370 seconds  
  
hbase(main):012:0> put 'employee',2,'info:name','paul'  
0 row(s) in 0.0180 seconds  
  
hbase(main):013:0> scan 'employee'  
ROW                                      COLUMN+CELL                                                                                                             
 1                                       column=info:id, timestamp=1417591291730, value=1                                                                        
 1                                       column=info:name, timestamp=1417591321072, value=peter                                                                  
 2                                       column=info:id, timestamp=1417591500179, value=2                                                                        
 2                                       column=info:name, timestamp=1417591512075, value=paul                                                                   
2 row(s) in 0.0440 seconds 

建立外部表进行映射
hive> CREATE EXTERNAL TABLE h_employee(key int, id int, name string)   
    > STORED BY 'org.apache.hadoop.hive.hbase.HBaseStorageHandler'  
    > WITH SERDEPROPERTIES ("hbase.columns.mapping" = ":key, info:id,info:name")  
    > TBLPROPERTIES ("hbase.table.name" = "employee");  
OK  
Time taken: 0.324 seconds  
hive> select * from h_employee;  
OK  
1   1   peter  
2   2   paul  
Time taken: 1.129 seconds, Fetched: 2 row(s)

查询语法

具体语法可以参考官方手册https://cwiki.apache.org/confluence/display/Hive/Tutorial 我只说几个比较奇怪的点

显示条数

展示x条数据,用的还是limit,比如
hive> select * from h_employee limit 1
    > ;
OK
1	1	peter
Time taken: 0.284 seconds, Fetched: 1 row(s)
但是不支持起点,比如offset
下课!




Statement
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn
Java错误:Hadoop错误,如何处理和避免Java错误:Hadoop错误,如何处理和避免Jun 24, 2023 pm 01:06 PM

Java错误:Hadoop错误,如何处理和避免当使用Hadoop处理大数据时,常常会遇到一些Java异常错误,这些错误可能会影响任务的执行,导致数据处理失败。本文将介绍一些常见的Hadoop错误,并提供处理和避免这些错误的方法。Java.lang.OutOfMemoryErrorOutOfMemoryError是Java虚拟机内存不足的错误。当Hadoop任

3分钟快速使用ChatGPT教程,用它帮我写简历,太牛了3分钟快速使用ChatGPT教程,用它帮我写简历,太牛了Apr 11, 2023 pm 07:40 PM

已经火了很久了,身边的同事也用它来进行一些调研,资源检索,工作汇报等方面都有很大的的效率提升。很多人问ChatGPT会不会取代程序员?我的回答是:不会!ChatGPT并不是我们的敌人,相反的是,它是我们的好帮手。未来人和人的竞争,可能就会从原先的我懂得更多,我实操经验更丰富,变成了我比你更会用工具,我比你更懂得提问,我比你更会发挥机器人的最大特性,所以,为了不掉队,你还不准备体验下ChatGPT吗?快速体验面试官经常会问你的项目有啥重难点?很多人不会回答,直接看看ChatGPT怎么说,真的太牛了

菜鸟如何开启派送通知菜鸟如何开启派送通知Feb 29, 2024 pm 07:40 PM

很多朋友会在菜鸟裹裹软件里查看自己的快递状态,有些朋友表示想知道怎样去设置开启派送通知。下面为大家介绍一下操作方法,还不了解的朋友一起来看看。1.打开手机中的菜鸟裹裹APP进入后,在页面的右下角位置点击“我的”切换进入。2.在我的页面里右上方位置点击“设置”图标打开。3.接下来,在设置页面里有一个“消息通知”,找到后在它的上面点击进入。4.在包裹通知设置页面里找到“派送中”这一项,在它的后面点击对应的开关按钮去进行设置,按钮为蓝色时代表开启该功能。当快递状态变更为派送中时会对我们进行通知提醒。

PHP基础教程:从入门到精通PHP基础教程:从入门到精通Jun 18, 2023 am 09:43 AM

PHP是一种广泛使用的开源服务器端脚本语言,它可以处理Web开发中所有的任务。PHP在网页开发中的应用广泛,尤其是在动态数据处理上表现优异,因此被众多开发者喜爱和使用。在本篇文章中,我们将一步步地讲解PHP基础知识,帮助初学者从入门到精通。一、基本语法PHP是一种解释性语言,其代码类似于HTML、CSS和JavaScript。每个PHP语句都以分号;结束,注

2023年最流行的5个php开发框架视频教程推荐2023年最流行的5个php开发框架视频教程推荐May 08, 2017 pm 04:26 PM

如果想快速进行php web开发,选择一个好用的php开发框架至关重要,一个好的php开发框架可以让开发工作变得更加快捷、安全和有效。那2023年最流行的php开发框架有哪些呢?这些php开发框架排名如何?

什么是OCO订单?什么是OCO订单?Apr 25, 2023 am 11:26 AM

二选一订单(OneCancelstheOther,简称OCO)可让您同时下达两个订单。它结合了限价单和限价止损单,但只能执行其中一个。换句话说,只要其中的限价单被部分或全部成交、止盈止损单被触发,另一个订单将自动取消。请注意,取消其中一个订单也会同时取消另一个订单。在币安交易平台进行交易时,您可以将二选一订单作为交易自动化的基本形式。这个功能可让您选择同时下达两个限价单,从而有助于止盈和最大程度减少潜在损失。如何使用二选一订单?登录您的币安帐户之后,请前往基本交易界面,找到下图所示的交易区域。点

在Beego中使用Hadoop和HBase进行大数据存储和查询在Beego中使用Hadoop和HBase进行大数据存储和查询Jun 22, 2023 am 10:21 AM

随着大数据时代的到来,数据处理和存储变得越来越重要,如何高效地管理和分析大量的数据也成为企业面临的挑战。Hadoop和HBase作为Apache基金会的两个项目,为大数据存储和分析提供了一种解决方案。本文将介绍如何在Beego中使用Hadoop和HBase进行大数据存储和查询。一、Hadoop和HBase简介Hadoop是一个开源的分布式存储和计算系统,它可

如何使用PHP和Hadoop进行大数据处理如何使用PHP和Hadoop进行大数据处理Jun 19, 2023 pm 02:24 PM

随着数据量的不断增大,传统的数据处理方式已经无法处理大数据时代带来的挑战。Hadoop是开源的分布式计算框架,它通过分布式存储和处理大量的数据,解决了单节点服务器在大数据处理中带来的性能瓶颈问题。PHP是一种脚本语言,广泛应用于Web开发,而且具有快速开发、易于维护等优点。本文将介绍如何使用PHP和Hadoop进行大数据处理。什么是HadoopHadoop是

See all articles

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

AI Hentai Generator

AI Hentai Generator

Generate AI Hentai for free.

Hot Article

R.E.P.O. Energy Crystals Explained and What They Do (Yellow Crystal)
2 weeks agoBy尊渡假赌尊渡假赌尊渡假赌
Repo: How To Revive Teammates
4 weeks agoBy尊渡假赌尊渡假赌尊渡假赌
Hello Kitty Island Adventure: How To Get Giant Seeds
4 weeks agoBy尊渡假赌尊渡假赌尊渡假赌

Hot Tools

Dreamweaver Mac version

Dreamweaver Mac version

Visual web development tools

Safe Exam Browser

Safe Exam Browser

Safe Exam Browser is a secure browser environment for taking online exams securely. This software turns any computer into a secure workstation. It controls access to any utility and prevents students from using unauthorized resources.

Zend Studio 13.0.1

Zend Studio 13.0.1

Powerful PHP integrated development environment

SAP NetWeaver Server Adapter for Eclipse

SAP NetWeaver Server Adapter for Eclipse

Integrate Eclipse with SAP NetWeaver application server.

SublimeText3 English version

SublimeText3 English version

Recommended: Win version, supports code prompts!