以下的文章主要描述的是MySQL innodb引擎中的count(*)陷阱,你如果对MySQL innodb引擎中的count(*)陷阱有兴趣的话你就可以点击以下的文章进行观看了。希望会给你带来一些帮助在此方面。 word引起MySQL数据库崩溃? InnoDB delete from xxx速度暴慢原因 MySQL
以下的文章主要描述的是MySQL innodb引擎中的count(*)陷阱,你如果对MySQL innodb引擎中的count(*)陷阱有兴趣的话你就可以点击以下的文章进行观看了。希望会给你带来一些帮助在此方面。
word引起MySQL数据库崩溃?
InnoDB delete from xxx速度暴慢原因
MySQL Storage Engine 小记
推荐圈子: JBPM @net
更多相关推荐 今天同学们在群里讨论oracle的count(*)与count(1)的问题,正好提到MySQL的情况。我突然想到自己遇到的问题:在myisam引擎执行count(*)速度非常快,而且执行速度与记录条数无关,而MySQL innodb却不是这样,记录越多,速度越慢。
于是做了一个实验,在一个有8000W条记录的innodb表执行了一下 select count(*) from table 。 果然一直等待,大概8分多后出来结果。马上再次执行相同的语句,用时大约22秒。马上执行第三次,还是约22秒。
于是我猜想innodb没有把记录数保存起来,而是做了实时统计,所以导致速度比较慢。第二次、第三次相对较快是因为高速缓存的原因。于是打电话咨询DBA同学。经过DBA同学的专业解答,我明白了:我猜对了,呵呵。所以,以后要注意在MySQL innodb中count(*)的问题,尽量避免吧……除非能确保该表始终保持很少的记录数。
另外,在网上查了一些资料:
引用
InnoDB Pitfalls
However, all is not rosy with InnoDB. Because of its transactional nature, it has bottlenecks of its own. On MyISAM, doing a query that does SELECT COUNT(*) FROM {some_table}, is very fast, since MyISAM keeps the information in the index.
On InnoDB, this info is not stored in an index, and even the index and the data are kept in the same file. So, doing the same query on a table can incur a significant performance penalty.
To check what overhead this has, I wrote a simple test benchmark code. I duplicated a client node table that has 20,243 rows from MyISAM to InnoDB.
On a quiescent AMD 64 machine with MySQL server 5.0.24, doing a SELECT COUNT(*) FROM node takes 0.835 milliseconds on MyISAM, while on InnoDB it takes 12.292 milliseconds!
以上就是对MySQL innodb引擎的count(*)问题的描述。

MySQL'sBLOBissuitableforstoringbinarydatawithinarelationaldatabase,whileNoSQLoptionslikeMongoDB,Redis,andCassandraofferflexible,scalablesolutionsforunstructureddata.BLOBissimplerbutcanslowdownperformancewithlargedata;NoSQLprovidesbetterscalabilityand

ToaddauserinMySQL,use:CREATEUSER'username'@'host'IDENTIFIEDBY'password';Here'showtodoitsecurely:1)Choosethehostcarefullytocontrolaccess.2)SetresourcelimitswithoptionslikeMAX_QUERIES_PER_HOUR.3)Usestrong,uniquepasswords.4)EnforceSSL/TLSconnectionswith

ToavoidcommonmistakeswithstringdatatypesinMySQL,understandstringtypenuances,choosetherighttype,andmanageencodingandcollationsettingseffectively.1)UseCHARforfixed-lengthstrings,VARCHARforvariable-length,andTEXT/BLOBforlargerdata.2)Setcorrectcharacters

MySQloffersechar, Varchar, text, Anddenumforstringdata.usecharforfixed-Lengthstrings, VarcharerForvariable-Length, text forlarger text, AndenumforenforcingdataAntegritywithaetofvalues.

Optimizing MySQLBLOB requests can be done through the following strategies: 1. Reduce the frequency of BLOB query, use independent requests or delay loading; 2. Select the appropriate BLOB type (such as TINYBLOB); 3. Separate the BLOB data into separate tables; 4. Compress the BLOB data at the application layer; 5. Index the BLOB metadata. These methods can effectively improve performance by combining monitoring, caching and data sharding in actual applications.

Mastering the method of adding MySQL users is crucial for database administrators and developers because it ensures the security and access control of the database. 1) Create a new user using the CREATEUSER command, 2) Assign permissions through the GRANT command, 3) Use FLUSHPRIVILEGES to ensure permissions take effect, 4) Regularly audit and clean user accounts to maintain performance and security.

ChooseCHARforfixed-lengthdata,VARCHARforvariable-lengthdata,andTEXTforlargetextfields.1)CHARisefficientforconsistent-lengthdatalikecodes.2)VARCHARsuitsvariable-lengthdatalikenames,balancingflexibilityandperformance.3)TEXTisidealforlargetextslikeartic

Best practices for handling string data types and indexes in MySQL include: 1) Selecting the appropriate string type, such as CHAR for fixed length, VARCHAR for variable length, and TEXT for large text; 2) Be cautious in indexing, avoid over-indexing, and create indexes for common queries; 3) Use prefix indexes and full-text indexes to optimize long string searches; 4) Regularly monitor and optimize indexes to keep indexes small and efficient. Through these methods, we can balance read and write performance and improve database efficiency.


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

VSCode Windows 64-bit Download
A free and powerful IDE editor launched by Microsoft

SAP NetWeaver Server Adapter for Eclipse
Integrate Eclipse with SAP NetWeaver application server.

SecLists
SecLists is the ultimate security tester's companion. It is a collection of various types of lists that are frequently used during security assessments, all in one place. SecLists helps make security testing more efficient and productive by conveniently providing all the lists a security tester might need. List types include usernames, passwords, URLs, fuzzing payloads, sensitive data patterns, web shells, and more. The tester can simply pull this repository onto a new test machine and he will have access to every type of list he needs.

Atom editor mac version download
The most popular open source editor

PhpStorm Mac version
The latest (2018.2.1) professional PHP integrated development tool
