In this post, I will demonstrate dynamic remastering of the resources in RAC .In RAC, every data block is mastered by an instance. Mastering a block simply means that master instance keeps track of the state of the block until the next reco
In this post, I will demonstrate dynamic remastering of the resources in RAC . In RAC, every data block is mastered by an instance. Mastering a block simply means that master instance keeps track of the state of the block until the next reconfiguration event .When one instance departs the cluster, the GRD portion of that instance needs to be redistributed to the surviving nodes. Similarly, when a new instance enters the cluster, the GRD portions of the existing instances must be redistributed to create the GRD portion of the new instance. This is called dynamic resource reconfiguration. In addition to dynamic resource reconfiguration, This is called dynamic remastering. The basic idea is to master a buffer cache resource on the instance where it is mostly accessed. In order to determine whether dynamic remastering is necessary, the GCS essentially keeps track of the number of GCS requests on a per-instance and per-object basis. This means that if an instance, compared to another, is heavily accessing blocks from the same object, the GCS can take the decision to dynamically migrate all of that object’s resources to the instance that is accessing the object most. LMON, LMD and LMS processes are responsible for Dynamic remastering. – Remastering can be triggered as result of – Manual remastering – Resource affinity – Instance crash – CURRENT SCENARIO - - 3 node setup - name of the database – racdb — SETUP – – Get data_object_id for scott.empSYS> col owner for a10 col data_object_id for 9999999 col object_name for a15 select owner, data_object_id, object_name from dba_objects where owner = 'SCOTT' and object_name = 'EMP';OWNER DATA_OBJECT_ID OBJECT_NAME ———- ————– ————— SCOTT 73181 EMP – Get File_id and block_id of emp table
SQL>select empno, dbms_rowid.rowid_relative_fno(rowid), dbms_rowid.rowid_block_number(rowid) from scott.emp where empno in (7788, 7369);EMPNO DBMS_ROWID.ROWID_RELATIVE_FNO(ROWID) DBMS_ROWID.ROWID_BLOCK_NUMBER(ROWID) ———- ———————————— ———————————— 7369 4 151 7788 4 151 – MANUAL REMASTERING – You can manually remaster an object with oradebug command : oradebug lkdebug -m pkey
[oracle@host01 ~]$ srvctl stop database -d racdb srvctl start database -d racdb srvctl status database -d racdb– Issue a select on the object from NODE2
SCOTT@NODE2> select * from emp;
– Find the GCS resource name to be used in the query x$kjbl.kjblname = resource name in hexadecimal format([id1],[id2],[type] x$kjbl.kjblname2 = resource name in decimal format Hexname will be used to query resource in V$gc_element and v$dlm_rss views get_resource_name
SYS@NODE2>col hexname for a25 col resource_name for a15 select b.kjblname hexname, b.kjblname2 resource_name, b.kjblgrant, b.kjblrole, b.kjblrequest from x$le a, x$kjbl b where a.le_kjbl=b.kjbllockp and a.le_addr = (select le_addr from x$bh where dbablk = 151 and obj = 73181 and class = 1 and state <> 3);HEXNAME RESOURCE_NAME KJBLGRANT KJBLROLE KJBLREQUE ————————- ————— ——— ———- ——— [0x97][0x4],[BL] 151,4,BL KJUSERPR 0 KJUSERNL – Check the current master of the block – – Note that current master of scott.emp is node1 (numbering starts from 0) – Previous master = 32767 is a place holder indicating that prior master was not known, meaning first remastering of that object.hat index happened. Now the master is 0 which is instance 1. – REMASTER_CNT = 1 indicating the object has been remastered only once
SYS>select o.object_name, m.CURRENT_MASTER, m.PREVIOUS_MASTER, m.REMASTER_CNT from dba_objects o, v$gcspfmaster_info m where o.data_object_id=73181 and m.data_object_id = 73181 ;OBJECT CURRENT_MASTER PREVIOUS_MASTER REMASTER_CNT —— ————– ————— ———— EMP 0 32767 1 – Use following SQL to show master and owner of the block. This SQL joins x$kjbl with x$le to retrieve resource name. – Note that current master is node1(KJBLMASTER=0) and current owner of the block is node2(KJBLOWNER = 1)
SYS@NODE2> select kj.kjblname, kj.kjblname2, kj.kjblowner, kj.kjblmaster from (select kjblname, kjblname2, kjblowner, kjblmaster, kjbllockp from x$kjbl where kjblname = '[0x97][0x4],[BL]' ) kj, x$le le where le.le_kjbl = kj.kjbllockp order by le.le_addr;KJBLNAME KJBLNAME2 KJBLOWNER KJBLMASTER —————————— —————————— ———- ———- [0x97][0x4],[BL] 151,4,BL 1 0 – Manually master the EMP table to node2 –
SYS@NODE2>oradebug lkdebug -m pkey 74625– Check that the current master of the block has changed to node2 (numbering starts from 0) – Previous master = 0 (Node1) – REMASTER_CNT = 2 indicating the object has been remastered twice
SYS>select o.object_name, m.CURRENT_MASTER, m.PREVIOUS_MASTER, m.REMASTER_CNT from dba_objects o, v$gcspfmaster_info m where o.data_object_id=74625 and m.data_object_id = 74625 ;OBJECT CURRENT_MASTER PREVIOUS_MASTER REMASTER_CNT —— ————– ————— ———— EMP 1 0 2 – Find master and owner of the block. – Note that current owner of the block is Node2 (KJBLOWNER=1) from where query was issued) – current master of the block has been changed to node2 (KJBLMASTER=1)
SYS> select kj.kjblname, kj.kjblname2, kj.kjblowner, kj.kjblmaster from (select kjblname, kjblname2, kjblowner, kjblmaster, kjbllockp from x$kjbl where kjblname = '[0x97][0x4],[BL]' ) kj, x$le le where le.le_kjbl = kj.kjbllockp order by le.le_addr;KJBLNAME KJBLNAME2 KJBLOWNER KJBLMASTER —————————— —————————— ———- ———- [0x97][0x4],[BL] 151,4,BL 1 1 ————————————————————————————— – REMASTERING DUE TO RESOURCE AFFINITY –
GCS masters a buffer cache resource on the instance where it is mostly accessed. In order to determine whether dynamic remastering is necessary, the GCS essentially keeps track of the number of GCS requests on a per-instance and per-object basis. This means that if an instance, compared to another, is heavily accessing blocks from the same object, the GCS can take the decision to dynamically migrate all of that object’s resources to the instance that is accessing the object most. X$object_policy_statistics maintains the statistics about objects and OPENs on those objects.LCK0 process maintains these object affinity statistics. Following parameters affect dynamic remastering due to resource affinity : _gc_policy_limit : If an instance opens 50 more opens on an object then the other instance (controlled by _gc_policy_limit parameter), then that object is a candidate for remastering. That object is queued and LMD0 reads the queue and initiates GRD freeze. LMON performs reconfiguration of buffer cache locks working with LMS processes. All these are visible in LMD0/LMON trace files. _gc_policy_time : It controls how often the queue is checked to see if the remastering must be triggered or not with a default value of 10 minutes. _gc_policy_minimum: This parameter is defined as “minimum amount of dynamic affinity activity per minute” to be a candidate for remastering. Defaults to 2500 and I think, it is lower in a busy environment. To disable DRM completely, set _gc_policy_limit and _gc_policy_minimum to much higher value, say 10Million. Setting the parameter _gc_policy_time to 0 will completely disable DRM, but that also means that you can not manually remaster objects. Further, $object_policy_statistics is not maintained if DRM is disabled. — SETUP –-
SYS>drop table scott.test purge; create table scott.test as select * from sh.sales; insert into scott.test select * from scott.test; commit; insert into scott.test select * from scott.test; commit; insert into scott.test select * from scott.test; commit; insert into scott.test select * from scott.test; commit;– Get data_object_id for scott.test
SYS> col data_object_id for 9999999 col object_name for a15 select owner, data_object_id, object_name, object_id from dba_objects where owner = 'SCOTT' and object_name = 'TEST';OWNER DATA_OBJECT_ID OBJECT_NAME OBJECT_ID —————————— ————– ————— ———- SCOTT 74626 TEST 74626 – Check the initial values of the parameters _gc_policy_minimum and _gc_policy_time – Enter name of the parameter when prompted
SYS> SET linesize 235 col Parameter FOR a20 col Instance FOR a10 col Description FOR a40 word_wrapped SELECT a.ksppinm "Parameter", c.ksppstvl "Instance", a.ksppdesc "Description" FROM x$ksppi a, x$ksppcv b, x$ksppsv c, v$parameter p WHERE a.indx = b.indx AND a.indx = c.indx AND p.name(+) = a.ksppinm AND UPPER(a.ksppinm) LIKE UPPER('%¶meter%') ORDER BY a.ksppinm; Enter value for parameter: gc_policy old 11: AND UPPER(a.ksppinm) LIKE UPPER('%¶meter%') new 11: AND UPPER(a.ksppinm) LIKE UPPER('%gc_policy%')Parameter Instance Description ——————– ———- —————————————- _gc_policy_minimum 1500 dynamic object policy minimum activity per minute _gc_policy_time 10 how often to make object policy decisions in minutes – Set _gc_policy_minimum and _gc_policy_time to very small values so that we can demonstrate remastering
SYS>alter system set "_gc_policy_minimum" = 10 scope=spfile; alter system set "_gc_policy_time" = 1 scope=spfile;– NODE1 – shutdown the database and restart
[oracle@host01 ~]$ srvctl stop database -d racdb srvctl start database -d racdb srvctl status database -d racdb– Check that parameter values have been changed to the minimum allowed by oracle although these values are not the ones we specified – Enter name of the parameter when prompted
SYS> SET linesize 235 col Parameter FOR a20 col Instance FOR a10 col Description FOR a40 word_wrapped SELECT a.ksppinm "Parameter", c.ksppstvl "Instance", a.ksppdesc "Description" FROM x$ksppi a, x$ksppcv b, x$ksppsv c, v$parameter p WHERE a.indx = b.indx AND a.indx = c.indx AND p.name(+) = a.ksppinm AND UPPER(a.ksppinm) LIKE UPPER('%¶meter%') ORDER BY a.ksppinm; old 11: AND UPPER(a.ksppinm) LIKE UPPER('%¶meter%') new 11: AND UPPER(a.ksppinm) LIKE UPPER('%gc_policy%') Enter value for parameter: gc_policyParameter Instance Description ——————– ———- —————————————- _gc_policy_minimum 20 dynamic object policy minimum activity per minute _gc_policy_time 4 how often to make object policy decisions in minutes - Assign TEST to node1 manually – Issue a select on scott.test from node1 –
SYS@NODE1>oradebug lkdebug -m pkey 74626 SCOTT@NODE1>select * from scott.test;– check the current master of scott.test – – Note that current master of scott.test is node1 (numbering starts from 0) – Previous master = 2 (node3) – REMASTER_CNT = 3 because while I was doing this demonstartion, remastering was initated 2 times earlier also.
SYS@NODE1>select o.object_name, m.CURRENT_MASTER, m.PREVIOUS_MASTER, m.REMASTER_CNT from dba_objects o, v$gcspfmaster_info m where o.data_object_id=74626 and m.data_object_id = 74626 ;OBJECT_NAME CURRENT_MASTER PREVIOUS_MASTER REMASTER_CNT ————— ————– ————— ———— TEST 0 2 3 – Issue an insert statement on scott.test from node3 so that scott.test
will be remastered to node3
SCOTT@NODE3>insert into scott.test select * from test;– check repeatedly that opens are increasing on scott.test with time
SYS@NODE1>select inst_id, sopens, xopens from x$object_policy_statistics where object=74626;INST_ID SOPENS XOPENS ———- ———- ———- 1 3664 0
SYS@NODE1>/INST_ID SOPENS XOPENS ———- ———- ———- 1 7585 1305 . . .
SYS@NODE1>/INST_ID SOPENS XOPENS ———- ———- ———- 1 12788 17000
SYS@NODE1>/INST_ID SOPENS XOPENS ———- ———- ———- 1 35052 39297 – check repeatedly if remastering has been initiated –
– Note that after some time . current master changes from node1CURRENT_MASTER =0) to node3 (CURRENT_MASTER =2) . Previous master changes from node3 ( PREVIOUS_MASTER=2) to node1( PREVIOUS_MASTER=0) – Remaster count increases from 3 to 4. .
SYS@NODE2>select o.object_name, m.CURRENT_MASTER, m.PREVIOUS_MASTER, m.REMASTER_CNT from dba_objects o, v$gcspfmaster_info m where o.data_object_id=74626 and m.data_object_id = 74626 ;
16:09:16 SYS@NODE2>/OBJECT_NAME OBJECT_NAME CURRENT_MASTER PREVIOUS_MASTER REMASTER_CNT —————– ————– ————— ———— TEST 0 2 3 . . . .
16:12:24 SYS@NODE2>/OBJECT_NAME CURRENT_MASTER PREVIOUS_MASTER REMASTER_CNT ——————————————————————————– TEST 2 0 4 —- REMASTERING DUE TO INSTANCE CRASH – Presently node3 is the master of SCOTT.TEST Let us crash node3 and monitor the remastering process
root@node3#init 6– check repeatedly if remastering has been initiated – – Note that scott.test has been remastered to node2 (CURRENT_MASTER=1) – PREVIOUS_MASTER =2 and REMASTER_CNT has increased from 4 to 5
SYS@NODE2>select o.object_name, m.CURRENT_MASTER, m.PREVIOUS_MASTER, m.REMASTER_CNT from dba_objects o, v$gcspfmaster_info m where o.data_object_id=74626 and m.data_object_id = 74626 ;OBJECT_NAME CURRENT_MASTER PREVIOUS_MASTER REMASTER_CNT ————— ————– ————— ———— TEST 1 2 5 — CLEANUP —
SYS@NODE1>drop table scott.test purge; SYa@NODE1S> alter system reset "_gc_policy_minimum" = 10 scope=spfile; alter system reset "_gc_policy_time" = 1 scope=spfile; [oracle@host01 ~]$ srvctl stop database -d racdb srvctl start database -d racdb srvctl status database -d racdbReferences:

This article addresses MySQL's "unable to open shared library" error. The issue stems from MySQL's inability to locate necessary shared libraries (.so/.dll files). Solutions involve verifying library installation via the system's package m

This article explores optimizing MySQL memory usage in Docker. It discusses monitoring techniques (Docker stats, Performance Schema, external tools) and configuration strategies. These include Docker memory limits, swapping, and cgroups, alongside

The article discusses using MySQL's ALTER TABLE statement to modify tables, including adding/dropping columns, renaming tables/columns, and changing column data types.

This article compares installing MySQL on Linux directly versus using Podman containers, with/without phpMyAdmin. It details installation steps for each method, emphasizing Podman's advantages in isolation, portability, and reproducibility, but also

This article provides a comprehensive overview of SQLite, a self-contained, serverless relational database. It details SQLite's advantages (simplicity, portability, ease of use) and disadvantages (concurrency limitations, scalability challenges). C

Article discusses configuring SSL/TLS encryption for MySQL, including certificate generation and verification. Main issue is using self-signed certificates' security implications.[Character count: 159]

This guide demonstrates installing and managing multiple MySQL versions on macOS using Homebrew. It emphasizes using Homebrew to isolate installations, preventing conflicts. The article details installation, starting/stopping services, and best pra

Article discusses popular MySQL GUI tools like MySQL Workbench and phpMyAdmin, comparing their features and suitability for beginners and advanced users.[159 characters]


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

Zend Studio 13.0.1
Powerful PHP integrated development environment

Notepad++7.3.1
Easy-to-use and free code editor

Atom editor mac version download
The most popular open source editor

SAP NetWeaver Server Adapter for Eclipse
Integrate Eclipse with SAP NetWeaver application server.

MinGW - Minimalist GNU for Windows
This project is in the process of being migrated to osdn.net/projects/mingw, you can continue to follow us there. MinGW: A native Windows port of the GNU Compiler Collection (GCC), freely distributable import libraries and header files for building native Windows applications; includes extensions to the MSVC runtime to support C99 functionality. All MinGW software can run on 64-bit Windows platforms.
