当我们将SQL语句提交给Oracle数据库时,Oracle会选择一种最优方式来执行,这是通过查询优化器Query Optimizer来实现的。CBO(Cos
通常,当我们将SQL语句提交给Oracle数据库时,Oracle会选择一种最优方式来执行,这是通过查询优化器Query Optimizer来实现的。CBO(Cost-Based Optimizer)是Oracle默认使用的查询优化器模式。在CBO中,SQL执行计划的生成,是以一种寻找成本(Cost)最优为目标导向的执行计划探索过程。所谓成本(Cost)就是将CPU和IO消耗整合起来的量化指标,每一个执行计划的成本就是经过优化器内部公式估算出的数字值。
我们在写SQL语句的时候,经常会碰到where子句后面有多个条件的情况,也就是根据多列的条件筛选得到数据。默认情况下,oracle会把多列的选择率(selectivity)相乘从而得到where语句的选择率,这样有可能造成选择率(selectivity)不准确,从而导致优化器做出错误的判断。为了能够让优化器做出准确的判断,从而生成准确的执行计划,oracle在11g数据库中引入了收集多列统计信息。本文通过对测试表的多条件查询,介绍收集多列统计信息的重要性。
1.环境准备
我们在Oracle 11g中进行试验。
SQL>
SQL> select * from v$version;
BANNER
--------------------------------------------------------------------------------
Oracle Database 11g Enterprise Edition Release 11.2.0.3.0 - Production
PL/SQL Release 11.2.0.3.0 - Production
CORE 11.2.0.3.0 Production
TNS for Linux: Version 11.2.0.3.0 - Production
NLSRTL Version 11.2.0.3.0 - Production
SQL>
在hr用户下创建测试表hoegh,重复插入数据,数据量相当于16个employees表(总行数1712=107*16)。
SQL>
SQL> conn hr/hr
Connected.
SQL>
SQL> create table hoegh as select * from employees;
Table created.
SQL> select count(*) from hoegh;
COUNT(*)
----------
107
SQL>
SQL> insert into hoegh select * from hoegh;
107 rows created.
SQL> /
214 rows created.
SQL> /
428 rows created.
SQL> /
856 rows created.
SQL> commit;
Commit complete.
SQL> select count(*) from hoegh;
COUNT(*)
----------
1712
SQL>
2.按照常规方法收集统计量信息;
SQL>
SQL> exec dbms_stats.gather_table_stats(\'HR\',\'HOEGH\');
PL/SQL procedure successfully completed.
SQL>
3.查看执行单个条件的where语句的执行计划
SQL>
SQL> explain plan for select * from hoegh where employee_id=110;
Explained.
SQL> select * from table(dbms_xplan.display);
PLAN_TABLE_OUTPUT
--------------------------------------------------------------------------------
Plan hash value: 774871165
---------------------------------------------------------------------------
| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |
---------------------------------------------------------------------------
| 0 | SELECT STATEMENT | | 16 | 1104 | 8 (0)| 00:00:01 |
|* 1 | TABLE ACCESS FULL| HOEGH | 16 | 1104 | 8 (0)| 00:00:01 |
---------------------------------------------------------------------------
Predicate Information (identified by operation id):
---------------------------------------------------
PLAN_TABLE_OUTPUT
--------------------------------------------------------------------------------
1 - filter(\"EMPLOYEE_ID\"=110)
13 rows selected.
SQL>
从执行计划可以看出返回了16行记录,结果没有问题。可是,这个16是哪儿来的呢,我们先要了解选择率(selectivity)和返回行数是如何计算的:
选择率(selectivity)=在本例中是 1/唯一值
返回行数=选择率(selectivity)*表记录总数
也就是说,在这个查询语句中,选择率=1/107,返回行数=1/107*1712=16
4.查看执行两个条件的where语句的执行计划
SQL>
SQL> explain plan for select * from hoegh where employee_id=110 and email=\'JCHEN\';
Explained.
SQL>
SQL> select * from table(dbms_xplan.display);
PLAN_TABLE_OUTPUT
--------------------------------------------------------------------------------
Plan hash value: 774871165
---------------------------------------------------------------------------
| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |
---------------------------------------------------------------------------
| 0 | SELECT STATEMENT | | 1 | 69 | 8 (0)| 00:00:01 |
|* 1 | TABLE ACCESS FULL| HOEGH | 1 | 69 | 8 (0)| 00:00:01 |
---------------------------------------------------------------------------
Predicate Information (identified by operation id):
---------------------------------------------------
PLAN_TABLE_OUTPUT
--------------------------------------------------------------------------------
1 - filter(\"EMPLOYEE_ID\"=110 AND \"EMAIL\"=\'JCHEN\')
13 rows selected.
SQL>
从执行计划可以看出返回了1行记录,而事实又是什么样的呢?我们执行一下这条sql语句。
SQL> select count(*) from hoegh where employee_id=110 and email=\'JCHEN\';
COUNT(*)
----------
16
SQL>
由此看出,测试表hoegh符合查询条件的数据有16行,而执行计划提示的只有1行,出错了。这是怎么回事呢,也就是我们在开篇提到的选择率(selectivity)出了问题。
在这个多列条件查询语句中,选择率=1/107*1/107,返回行数=1/107*1/107*1712=16/107
5.收集多列统计信息,再次查看两个条件的where语句的执行计划
SQL>
SQL> exec dbms_stats.gather_table_stats(\'HR\',\'HOEGH\',method_opt=>\'for columns(employee_id,email)\');
PL/SQL procedure successfully completed.
SQL>
SQL> explain plan for select * from hoegh where employee_id=110 and email=\'JCHEN\';
Explained.
SQL> select * from table(dbms_xplan.display);
PLAN_TABLE_OUTPUT
--------------------------------------------------------------------------------
Plan hash value: 774871165
---------------------------------------------------------------------------
| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |
---------------------------------------------------------------------------
| 0 | SELECT STATEMENT | | 16 | 1152 | 8 (0)| 00:00:01 |
|* 1 | TABLE ACCESS FULL| HOEGH | 16 | 1152 | 8 (0)| 00:00:01 |
---------------------------------------------------------------------------
Predicate Information (identified by operation id):
---------------------------------------------------
PLAN_TABLE_OUTPUT
--------------------------------------------------------------------------------
1 - filter(\"EMPLOYEE_ID\"=110 AND \"EMAIL\"=\'JCHEN\')
13 rows selected.
SQL>

The article discusses using MySQL's ALTER TABLE statement to modify tables, including adding/dropping columns, renaming tables/columns, and changing column data types.

Article discusses configuring SSL/TLS encryption for MySQL, including certificate generation and verification. Main issue is using self-signed certificates' security implications.[Character count: 159]

Article discusses strategies for handling large datasets in MySQL, including partitioning, sharding, indexing, and query optimization.

Article discusses popular MySQL GUI tools like MySQL Workbench and phpMyAdmin, comparing their features and suitability for beginners and advanced users.[159 characters]

The article discusses dropping tables in MySQL using the DROP TABLE statement, emphasizing precautions and risks. It highlights that the action is irreversible without backups, detailing recovery methods and potential production environment hazards.

Article discusses using foreign keys to represent relationships in databases, focusing on best practices, data integrity, and common pitfalls to avoid.

The article discusses creating indexes on JSON columns in various databases like PostgreSQL, MySQL, and MongoDB to enhance query performance. It explains the syntax and benefits of indexing specific JSON paths, and lists supported database systems.

Article discusses securing MySQL against SQL injection and brute-force attacks using prepared statements, input validation, and strong password policies.(159 characters)


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

Atom editor mac version download
The most popular open source editor

VSCode Windows 64-bit Download
A free and powerful IDE editor launched by Microsoft

MinGW - Minimalist GNU for Windows
This project is in the process of being migrated to osdn.net/projects/mingw, you can continue to follow us there. MinGW: A native Windows port of the GNU Compiler Collection (GCC), freely distributable import libraries and header files for building native Windows applications; includes extensions to the MSVC runtime to support C99 functionality. All MinGW software can run on 64-bit Windows platforms.

SublimeText3 Linux new version
SublimeText3 Linux latest version

mPDF
mPDF is a PHP library that can generate PDF files from UTF-8 encoded HTML. The original author, Ian Back, wrote mPDF to output PDF files "on the fly" from his website and handle different languages. It is slower than original scripts like HTML2FPDF and produces larger files when using Unicode fonts, but supports CSS styles etc. and has a lot of enhancements. Supports almost all languages, including RTL (Arabic and Hebrew) and CJK (Chinese, Japanese and Korean). Supports nested block-level elements (such as P, DIV),
