最近对公司产品的日志数据库做了一个数据分区,数据库使用的是sql server 2008,这里给大家提供一个参考。 需要特别说明的是,很多网上的例子分区字段都使用的是时间类型的,而这里由于时间字段原来设计数据库使用的是字符串类型的。所以这里的分区字段使用的
最近对公司产品的日志数据库做了一个数据分区,数据库使用的是sql server 2008,这里给大家提供一个参考。
需要特别说明的是,很多网上的例子分区字段都使用的是时间类型的,而这里由于时间字段原来设计数据库使用的是字符串类型的。所以这里的分区字段使用的是字符串类型的,进过我的测试,也能成功。
1:建立分区组:建立了十个分区组go alter database M2 add filegroup [FG1]; go alter database M2 add filegroup [FG2]; go alter database M2 add filegroup [FG3]; go alter database M2 add filegroup [FG4]; go alter database M2 add filegroup [FG5]; go alter database M2 add filegroup [FG6]; go alter database M2 add filegroup [FG7]; go alter database M2 add filegroup [FG8]; go alter database M2 add filegroup [FG9]; go
2:为分区组指定分区文件,我把分区文件放到不同的盘符下面,这样读取文件就会更快,可以并行的读取文件。这个也是分区能够提高效率的原理。
alter database M2 addfile(name=FG1_data,filename='c:\esafenet\FG1_data.ndf',size=10MB) tofilegroup[FG1]; alter database M2 addfile(name=FG2_data,filename='c:\esafenet\FG2_data.ndf',size=10MB) tofilegroup[FG2]; alter database M2 addfile(name=FG3_data,filename='d:\esafenet\FG3_data.ndf',size=10MB) tofilegroup[FG3]; alter database M2 addfile(name=FG4_data,filename='d:\esafenet\FG4_data.ndf',size=10MB) tofilegroup[FG4]; alter database M2 addfile(name=FG5_data,filename='e:\esafenet\FG5_data.ndf',size=10MB) tofilegroup[FG5]; alter database M2 addfile(name=FG6_data,filename='d:\esafenet\FG6_data.ndf',size=10MB) tofilegroup[FG6]; alter database M2 addfile(name=FG7_data,filename='f:\esafenet\FG7_data.ndf',size=10MB) tofilegroup[FG7]; alter database M2 addfile(name=FG8_data,filename='f:\esafenet\FG8_data.ndf',size=10MB) tofilegroup[FG8]; alter database M2 addfile(name=FG9_data,filename='c:\esafenet\FG9_data.ndf',size=10MB) tofilegroup[FG9]; go
3:建立分区函数,这个需要和分区组表匹配
Create partitionfunction Part_mediasec_func(nvarchar(30))as range left for values('2013123123:59:59', '20141231 23:59:59', '20151231 23:59:59', '20161231 23:59:59', '20171231 23:59:59', '20181231 23:59:59', '20191231 23:59:59', '20201231 23:59:59', '20211231 23:59:59'); go
3:建立分区结构,将分区函数和分区组对应起来
Create partitionscheme Part_mediasec_scheme as partitionPart_mediasec_func to([FG1],[FG2],[FG3],[FG4],[FG5],[FG6],[FG7],[FG8],[FG9],[Primary]); go
4:建立分区索引
EXEC sp_helpindexN'SecureUsbLog' --查看原来索引 alter tableSecureUsbLog drop constraint PK__SecureUs__7839F64D1F98B2C1 go create clusteredindex SecureUsbLog_index onSecureUsbLog(logTime) onPart_mediasec_scheme(logTime); Go
这次分区的特点有两个:
1:对已经使用的数据库进行分区,网上大多数例子是新建的分区和数据库。
2:对字符串类型日期进行分区。
这两点还是很有参考价值的。

Stored procedures are precompiled SQL statements in MySQL for improving performance and simplifying complex operations. 1. Improve performance: After the first compilation, subsequent calls do not need to be recompiled. 2. Improve security: Restrict data table access through permission control. 3. Simplify complex operations: combine multiple SQL statements to simplify application layer logic.

The working principle of MySQL query cache is to store the results of SELECT query, and when the same query is executed again, the cached results are directly returned. 1) Query cache improves database reading performance and finds cached results through hash values. 2) Simple configuration, set query_cache_type and query_cache_size in MySQL configuration file. 3) Use the SQL_NO_CACHE keyword to disable the cache of specific queries. 4) In high-frequency update environments, query cache may cause performance bottlenecks and needs to be optimized for use through monitoring and adjustment of parameters.

The reasons why MySQL is widely used in various projects include: 1. High performance and scalability, supporting multiple storage engines; 2. Easy to use and maintain, simple configuration and rich tools; 3. Rich ecosystem, attracting a large number of community and third-party tool support; 4. Cross-platform support, suitable for multiple operating systems.

The steps for upgrading MySQL database include: 1. Backup the database, 2. Stop the current MySQL service, 3. Install the new version of MySQL, 4. Start the new version of MySQL service, 5. Recover the database. Compatibility issues are required during the upgrade process, and advanced tools such as PerconaToolkit can be used for testing and optimization.

MySQL backup policies include logical backup, physical backup, incremental backup, replication-based backup, and cloud backup. 1. Logical backup uses mysqldump to export database structure and data, which is suitable for small databases and version migrations. 2. Physical backups are fast and comprehensive by copying data files, but require database consistency. 3. Incremental backup uses binary logging to record changes, which is suitable for large databases. 4. Replication-based backup reduces the impact on the production system by backing up from the server. 5. Cloud backups such as AmazonRDS provide automation solutions, but costs and control need to be considered. When selecting a policy, database size, downtime tolerance, recovery time, and recovery point goals should be considered.

MySQLclusteringenhancesdatabaserobustnessandscalabilitybydistributingdataacrossmultiplenodes.ItusestheNDBenginefordatareplicationandfaulttolerance,ensuringhighavailability.Setupinvolvesconfiguringmanagement,data,andSQLnodes,withcarefulmonitoringandpe

Optimizing database schema design in MySQL can improve performance through the following steps: 1. Index optimization: Create indexes on common query columns, balancing the overhead of query and inserting updates. 2. Table structure optimization: Reduce data redundancy through normalization or anti-normalization and improve access efficiency. 3. Data type selection: Use appropriate data types, such as INT instead of VARCHAR, to reduce storage space. 4. Partitioning and sub-table: For large data volumes, use partitioning and sub-table to disperse data to improve query and maintenance efficiency.

TooptimizeMySQLperformance,followthesesteps:1)Implementproperindexingtospeedupqueries,2)UseEXPLAINtoanalyzeandoptimizequeryperformance,3)Adjustserverconfigurationsettingslikeinnodb_buffer_pool_sizeandmax_connections,4)Usepartitioningforlargetablestoi


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

SublimeText3 Linux new version
SublimeText3 Linux latest version

Dreamweaver Mac version
Visual web development tools

WebStorm Mac version
Useful JavaScript development tools

PhpStorm Mac version
The latest (2018.2.1) professional PHP integrated development tool

DVWA
Damn Vulnerable Web App (DVWA) is a PHP/MySQL web application that is very vulnerable. Its main goals are to be an aid for security professionals to test their skills and tools in a legal environment, to help web developers better understand the process of securing web applications, and to help teachers/students teach/learn in a classroom environment Web application security. The goal of DVWA is to practice some of the most common web vulnerabilities through a simple and straightforward interface, with varying degrees of difficulty. Please note that this software
