要查询短时间内的可以从v$sql 或者是v$sqlarea 如果要查询一周或者一个月内 那么有可能在V$SQLAREA里找不到!下面是通过历史DBA_HIST_SQLSTAT里获得, 这个是通过快照方式保留下来的. --执行时间最长的 WITH BASTABLE AS ( SELECT DBMS_LOB.SUBSTR(SQL_TEXT,40
要查询短时间内的可以从v$sql 或者是v$sqlarea 如果要查询一周或者一个月内 那么有可能在V$SQLAREA里找不到!下面是通过历史DBA_HIST_SQLSTAT里获得, 这个是通过快照方式保留下来的.
--执行时间最长的
WITH BASTABLE AS
(
SELECT DBMS_LOB.SUBSTR(SQL_TEXT,4000, 1 ) AS SQL_FULL_TEXT,
DHST.SQL_ID,
ROUND (X.ELAPSED_TIME / 1000000 / X.EXECUTIONS_DELTA, 3) AVG_ELAPSED_TIME_SEC,
ROUND (X.CPU_TIME / 1000000 / X.EXECUTIONS_DELTA, 3) AVG_CPU_TIME_SEC,
ROUND (X.BUFFER_GETS_DELTA / X.EXECUTIONS_DELTA, 3) AVG_BUFFER_GETS,
ROUND (X.PARSE_CALLS_DELTA/X.EXECUTIONS_DELTA*100, 3) EXEC_PARSE_RATE,
ROUND (X.PHYSICAL_READ_BYTES_DELTA/1024/X.EXECUTIONS_DELTA, 3) AVG_PHYSICAL_READ_KB,
ROUND (X.DISK_READS_DELTA / X.EXECUTIONS_DELTA, 3) AVG_DISK_READS,
EXECUTIONS_DELTA AS EXEC_TOTAL_NUM,DHST.COMMAND_TYPE,N.COMMAND_NAME
FROM DBA_HIST_SQLTEXT DHST, DBA_HIST_SQLCOMMAND_NAME N,
(
SELECT DHSS.SQL_ID SQL_ID,
SUM (DHSS.CPU_TIME_DELTA) CPU_TIME,
SUM (DHSS.ELAPSED_TIME_DELTA) ELAPSED_TIME,
CASE SUM (DHSS.EXECUTIONS_DELTA) WHEN 0 THEN 1 ELSE SUM (DHSS.EXECUTIONS_DELTA) END AS EXECUTIONS_DELTA,
CASE SUM (DHSS.SORTS_DELTA) WHEN 0 THEN 1 ELSE SUM (DHSS.SORTS_DELTA) END AS SORTS_DELTA,
CASE SUM (DHSS.FETCHES_DELTA) WHEN 0 THEN 1 ELSE SUM (DHSS.FETCHES_DELTA) END AS FETCHES_DELTA,
CASE SUM (DHSS.PARSE_CALLS_DELTA) WHEN 0 THEN 1 ELSE SUM (DHSS.PARSE_CALLS_DELTA) END AS PARSE_CALLS_DELTA,
CASE SUM (DHSS.DISK_READS_DELTA) WHEN 0 THEN 1 ELSE SUM (DHSS.DISK_READS_DELTA) END AS DISK_READS_DELTA,
CASE SUM (DHSS.BUFFER_GETS_DELTA) WHEN 0 THEN 1 ELSE SUM (DHSS.BUFFER_GETS_DELTA) END AS BUFFER_GETS_DELTA,
CASE SUM (DHSS.IOWAIT_DELTA) WHEN 0 THEN 1 ELSE SUM (DHSS.IOWAIT_DELTA) END AS IOWAIT_DELTA,
CASE SUM (DHSS.PHYSICAL_READ_BYTES_DELTA) WHEN 0 THEN 1 ELSE SUM (DHSS.PHYSICAL_READ_BYTES_DELTA) END AS PHYSICAL_READ_BYTES_DELTA
FROM DBA_HIST_SQLSTAT DHSS
WHERE DHSS.SNAP_ID IN
(SELECT SNAP_ID
FROM DBA_HIST_SNAPSHOT
WHERE BEGIN_INTERVAL_TIME >= TRUNC(SYSDATE)-30
AND END_INTERVAL_TIME
AND DHSS.PARSING_SCHEMA_NAME =UPPER('SHARK')
GROUP BY DHSS.SQL_ID
) X
WHERE X.SQL_ID = DHST.SQL_ID
AND DHST.COMMAND_TYPE = N.COMMAND_TYPE
)
SELECT * FROM
(
SELECT SQL_FULL_TEXT,SQL_ID,EXEC_TOTAL_NUM, AVG_DISK_READS AS VALUE_S, 'AVG_DISK_READS' AS VALUES_TYPE
FROM BASTABLE WHERE COMMAND_TYPE47 AND SQL_FULL_TEXT NOT LIKE '/* SQL A%' ORDER BY AVG_DISK_READS DESC ) WHERE ROWNUM
UNION ALL
SELECT * FROM
(
SELECT SQL_FULL_TEXT,SQL_ID,EXEC_TOTAL_NUM, AVG_ELAPSED_TIME_SEC AS VALUE_S, 'AVG_ELAPSED_TIME_SEC' AS VALUES_TYPE
FROM BASTABLE WHERE COMMAND_TYPE47 AND SQL_FULL_TEXT NOT LIKE '/* SQL A%' ORDER BY AVG_ELAPSED_TIME_SEC DESC ) WHERE ROWNUM
UNION ALL
SELECT * FROM
(
SELECT SQL_FULL_TEXT,SQL_ID,EXEC_TOTAL_NUM, AVG_CPU_TIME_SEC AS VALUE_S, 'AVG_CPU_TIME_SEC' AS VALUES_TYPE
FROM BASTABLE WHERE COMMAND_TYPE47 AND SQL_FULL_TEXT NOT LIKE '/* SQL A%' ORDER BY AVG_CPU_TIME_SEC DESC ) WHERE ROWNUM
UNION ALL
SELECT * FROM
(
SELECT SQL_FULL_TEXT,SQL_ID,EXEC_TOTAL_NUM, AVG_BUFFER_GETS AS VALUE_S, 'AVG_BUFFER_GETS' AS VALUES_TYPE
FROM BASTABLE WHERE COMMAND_TYPE47 AND SQL_FULL_TEXT NOT LIKE '/* SQL A%' ORDER BY AVG_BUFFER_GETS DESC ) WHERE ROWNUM
UNION ALL
SELECT * FROM
(
SELECT SQL_FULL_TEXT,SQL_ID,EXEC_TOTAL_NUM, EXEC_PARSE_RATE AS VALUE_S, 'EXEC_PARSE_RATE' AS VALUES_TYPE
FROM BASTABLE WHERE COMMAND_TYPE47 AND SQL_FULL_TEXT NOT LIKE '/* SQL A%' ORDER BY EXEC_PARSE_RATE DESC ) WHERE ROWNUM
UNION ALL
SELECT * FROM
(
SELECT SQL_FULL_TEXT,SQL_ID,EXEC_TOTAL_NUM, AVG_PHYSICAL_READ_KB AS VALUE_S, 'AVG_PHYSICAL_READ_KB' AS VALUES_TYPE
FROM BASTABLE WHERE COMMAND_TYPE47 ORDER BY AVG_PHYSICAL_READ_KB DESC ) WHERE ROWNUM
UNION ALL
SELECT * FROM
(
SELECT SQL_FULL_TEXT,SQL_ID,EXEC_TOTAL_NUM, EXEC_TOTAL_NUM AS VALUE_S, 'EXEC_TOTAL_NUM' AS VALUES_TYPE
FROM BASTABLE WHERE COMMAND_TYPE47 AND SQL_FULL_TEXT NOT LIKE '/* SQL A%' ORDER BY EXEC_TOTAL_NUM DESC ) WHERE ROWNUM
UNION ALL
SELECT * FROM
(
SELECT SQL_FULL_TEXT,SQL_ID,EXEC_TOTAL_NUM, AVG_ELAPSED_TIME_SEC AS VALUE_S, 'PROCEDURES_EXEC_TIME' AS VALUES_TYPE
FROM BASTABLE WHERE COMMAND_TYPE=47 AND SQL_FULL_TEXT NOT LIKE '/* SQL A%' ORDER BY AVG_ELAPSED_TIME_SEC DESC ) WHERE ROWNUM

MySQLBLOBshavelimits:TINYBLOB(255bytes),BLOB(65,535bytes),MEDIUMBLOB(16,777,215bytes),andLONGBLOB(4,294,967,295bytes).TouseBLOBseffectively:1)ConsiderperformanceimpactsandstorelargeBLOBsexternally;2)Managebackupsandreplicationcarefully;3)Usepathsinst

The best tools and technologies for automating the creation of users in MySQL include: 1. MySQLWorkbench, suitable for small to medium-sized environments, easy to use but high resource consumption; 2. Ansible, suitable for multi-server environments, simple but steep learning curve; 3. Custom Python scripts, flexible but need to ensure script security; 4. Puppet and Chef, suitable for large-scale environments, complex but scalable. Scale, learning curve and integration needs should be considered when choosing.

Yes,youcansearchinsideaBLOBinMySQLusingspecifictechniques.1)ConverttheBLOBtoaUTF-8stringwithCONVERTfunctionandsearchusingLIKE.2)ForcompressedBLOBs,useUNCOMPRESSbeforeconversion.3)Considerperformanceimpactsanddataencoding.4)Forcomplexdata,externalproc

MySQLoffersvariousstringdatatypes:1)CHARforfixed-lengthstrings,idealforconsistentlengthdatalikecountrycodes;2)VARCHARforvariable-lengthstrings,suitableforfieldslikenames;3)TEXTtypesforlargertext,goodforblogpostsbutcanimpactperformance;4)BINARYandVARB

TomasterMySQLBLOBs,followthesesteps:1)ChoosetheappropriateBLOBtype(TINYBLOB,BLOB,MEDIUMBLOB,LONGBLOB)basedondatasize.2)InsertdatausingLOAD_FILEforefficiency.3)Storefilereferencesinsteadoffilestoimproveperformance.4)UseDUMPFILEtoretrieveandsaveBLOBsco

BlobdatatypesinmysqlareusedforvoringLargebinarydatalikeImagesoraudio.1) Useblobtypes (tinyblobtolongblob) Basedondatasizeneeds. 2) Storeblobsin Perplate Petooptimize Performance.3) ConsidersxterNal Storage Forel Blob Romana DatabasesizerIndimprovebackupupe

ToadduserstoMySQLfromthecommandline,loginasroot,thenuseCREATEUSER'username'@'host'IDENTIFIEDBY'password';tocreateanewuser.GrantpermissionswithGRANTALLPRIVILEGESONdatabase.*TO'username'@'host';anduseFLUSHPRIVILEGES;toapplychanges.Alwaysusestrongpasswo

MySQLofferseightstringdatatypes:CHAR,VARCHAR,BINARY,VARBINARY,BLOB,TEXT,ENUM,andSET.1)CHARisfixed-length,idealforconsistentdatalikecountrycodes.2)VARCHARisvariable-length,efficientforvaryingdatalikenames.3)BINARYandVARBINARYstorebinarydata,similartoC


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

mPDF
mPDF is a PHP library that can generate PDF files from UTF-8 encoded HTML. The original author, Ian Back, wrote mPDF to output PDF files "on the fly" from his website and handle different languages. It is slower than original scripts like HTML2FPDF and produces larger files when using Unicode fonts, but supports CSS styles etc. and has a lot of enhancements. Supports almost all languages, including RTL (Arabic and Hebrew) and CJK (Chinese, Japanese and Korean). Supports nested block-level elements (such as P, DIV),

EditPlus Chinese cracked version
Small size, syntax highlighting, does not support code prompt function

SecLists
SecLists is the ultimate security tester's companion. It is a collection of various types of lists that are frequently used during security assessments, all in one place. SecLists helps make security testing more efficient and productive by conveniently providing all the lists a security tester might need. List types include usernames, passwords, URLs, fuzzing payloads, sensitive data patterns, web shells, and more. The tester can simply pull this repository onto a new test machine and he will have access to every type of list he needs.

SublimeText3 English version
Recommended: Win version, supports code prompts!

PhpStorm Mac version
The latest (2018.2.1) professional PHP integrated development tool
