有个不大的表 数据量大于百万级别 这是类似IP地址范围查找. 表的查询量很大.数实时生成,有时会被更新该表上的索引 主键和表 都被
有个不大的表 数据量大于百万级别 这是类似IP地址范围查找. 表的查询量很大.数实时生成,有时会被更新该表上的索引 主键和表 都被我KEEP进内存了。
查询速度 基本保持在50-30毫秒之间.
该表的数据 一天要查500万次以上.同时被重复查询的次数也蛮多子.
鉴于这个原因 所以向开发人员提出 在SQL 增加提示 /*+ result_cache */
结论是 结果缓存通过表的依赖而失效,也就是说相应表发生了数据变化那么就重新从表获取.相比时间 比普通45毫秒 高很多 达到945毫秒. 难道它不晓得从内存中获取吗? 还是觉得表数据有变化,直接从硬盘上读取才是真!
declare
B1 VARCHAR2(20);
B2 NUMBER;
ORG NUMBER(10);
S TIMESTAMP;
E TIMESTAMP;
R TIMESTAMP;
begin
B2:=12;
B1:=668239581895;
FOR I IN 1..100 LOOP
S:=SYSTIMESTAMP;
SELECT /*+ result_cache */ USE_IP into IP
FROM (SELECT A.USE_IP
A.IP_TYPE
FROM BACK_IP A
WHEREA.IP_TYPE IN (3, 5, 9)
ANDIP_LEGN = B2
ANDA.START_IP
ANDA.END_IP >= B1
ORDER BYA.DISP_DATE DESC,
A.CREATE_TIME DESC)
WHERE ROWNUM
E:=SYSTIMESTAMP;
DBMS_OUTPUT.PUT_LINE(TO_CHAR(E-S));
DBMS_LOCK.SLEEP(10);
END LOOP;
END ;
测试结果 不很理想 波动性太大了.
+00000000000:00:00.090374000
+00000000000:00:00.102860000
+00000000000:00:00.000237000
+00000000000:00:00.000139000
+00000000000:00:00.000135000
+00000000000:00:00.000163000
+00000000000:00:00.000170000
+00000000000:00:00.000206000
+00000000000:00:00.000173000
+000000000 00:00:00.000171000
+00000000000:00:00.000170000
+00000000000:00:00.000139000
+00000000000:00:00.000267000
+00000000000:00:00.000171000
+00000000000:00:00.000160000
+00000000000:00:00.000180000
+00000000000:00:00.000161000
+00000000000:00:00.000183000
+00000000000:00:00.000182000
+00000000000:00:00.000139000
+00000000000:00:00.000147000
+00000000000:00:00.000160000
+00000000000:00:00.000212000
+00000000000:00:00.000353000
+00000000000:00:00.094454000
本文永久更新链接地址:
,
MySQL'sBLOBissuitableforstoringbinarydatawithinarelationaldatabase,whileNoSQLoptionslikeMongoDB,Redis,andCassandraofferflexible,scalablesolutionsforunstructureddata.BLOBissimplerbutcanslowdownperformancewithlargedata;NoSQLprovidesbetterscalabilityand

ToaddauserinMySQL,use:CREATEUSER'username'@'host'IDENTIFIEDBY'password';Here'showtodoitsecurely:1)Choosethehostcarefullytocontrolaccess.2)SetresourcelimitswithoptionslikeMAX_QUERIES_PER_HOUR.3)Usestrong,uniquepasswords.4)EnforceSSL/TLSconnectionswith

ToavoidcommonmistakeswithstringdatatypesinMySQL,understandstringtypenuances,choosetherighttype,andmanageencodingandcollationsettingseffectively.1)UseCHARforfixed-lengthstrings,VARCHARforvariable-length,andTEXT/BLOBforlargerdata.2)Setcorrectcharacters

MySQloffersechar, Varchar, text, Anddenumforstringdata.usecharforfixed-Lengthstrings, VarcharerForvariable-Length, text forlarger text, AndenumforenforcingdataAntegritywithaetofvalues.

Optimizing MySQLBLOB requests can be done through the following strategies: 1. Reduce the frequency of BLOB query, use independent requests or delay loading; 2. Select the appropriate BLOB type (such as TINYBLOB); 3. Separate the BLOB data into separate tables; 4. Compress the BLOB data at the application layer; 5. Index the BLOB metadata. These methods can effectively improve performance by combining monitoring, caching and data sharding in actual applications.

Mastering the method of adding MySQL users is crucial for database administrators and developers because it ensures the security and access control of the database. 1) Create a new user using the CREATEUSER command, 2) Assign permissions through the GRANT command, 3) Use FLUSHPRIVILEGES to ensure permissions take effect, 4) Regularly audit and clean user accounts to maintain performance and security.

ChooseCHARforfixed-lengthdata,VARCHARforvariable-lengthdata,andTEXTforlargetextfields.1)CHARisefficientforconsistent-lengthdatalikecodes.2)VARCHARsuitsvariable-lengthdatalikenames,balancingflexibilityandperformance.3)TEXTisidealforlargetextslikeartic

Best practices for handling string data types and indexes in MySQL include: 1) Selecting the appropriate string type, such as CHAR for fixed length, VARCHAR for variable length, and TEXT for large text; 2) Be cautious in indexing, avoid over-indexing, and create indexes for common queries; 3) Use prefix indexes and full-text indexes to optimize long string searches; 4) Regularly monitor and optimize indexes to keep indexes small and efficient. Through these methods, we can balance read and write performance and improve database efficiency.


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

MinGW - Minimalist GNU for Windows
This project is in the process of being migrated to osdn.net/projects/mingw, you can continue to follow us there. MinGW: A native Windows port of the GNU Compiler Collection (GCC), freely distributable import libraries and header files for building native Windows applications; includes extensions to the MSVC runtime to support C99 functionality. All MinGW software can run on 64-bit Windows platforms.

Dreamweaver Mac version
Visual web development tools

MantisBT
Mantis is an easy-to-deploy web-based defect tracking tool designed to aid in product defect tracking. It requires PHP, MySQL and a web server. Check out our demo and hosting services.

WebStorm Mac version
Useful JavaScript development tools

Zend Studio 13.0.1
Powerful PHP integrated development environment
