原语句 update HAHA a set (td03_flag) = (select td03_flag from z_temp1 b where a.user_id = b.user_id and lx = pz) Plan hash value: 1855602026 SQL_ID 62h7a9s7yyr18, child number 0------------------------------------- update HAHA a set (td03_
原语句
update HAHA a set (td03_flag) = (select td03_flag
from z_temp1 b where a.user_id = b.user_id and lx = 'pz')Plan hash value: 1855602026
SQL_ID 62h7a9s7yyr18, child number 0 ------------------------------------- update HAHA a set (td03_flag) = (select td03_flag from z_temp1 b where a.user_id = b.user_id and lx = 'pz') Plan hash value: 1855602026 ------------------------------------------------------------------------------------------------------------- | Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time | ------------------------------------------------------------------------------------------------------------- | 0 | UPDATE STATEMENT | | | | 8720M(100)| | | 1 | UPDATE | HAHA | | | | | | 2 | TABLE ACCESS FULL | HAHA | 2094K| 51M| 5404 (3)| 00:01:05 | | 3 | TABLE ACCESS BY INDEX ROWID | Z_TEMP1 | 24383 | 714K| 4163 (2)| 00:00:50 | | 4 | BITMAP CONVERSION TO ROWIDS | | | | | | | 5 | BITMAP AND | | | | | | | 6 | BITMAP CONVERSION FROM ROWIDS| | | | | | |* 7 | INDEX RANGE SCAN | Z_TEMP1_U | 2438K| | 3 (0)| 00:00:01 | | 8 | BITMAP CONVERSION FROM ROWIDS| | | | | | |* 9 | INDEX RANGE SCAN | Z_TEMP1_L | 2438K| | 4108 (2)| 00:00:50 | ------------------------------------------------------------------------------------------------------------- Predicate Information (identified by operation id): --------------------------------------------------- 7 - access("B"."USER_ID"=:B1) 9 - access("LX"='pz') 我们可以看第7步的谓词7 - access("B"."USER_ID"=:B1) 这种:B1 是一个变量,变量就有输入源,这里的变量的输入源就是第2步中的每一行
我们就可以简单理解为,就是第2步有多少条语句,第三步就要执行多少次(7是第三步的子步骤,从这一步开始,一直执行完整个 第3步) 这种行为即是Nested loop。
虽然这里有索引,但这里的整个过程,是 两个位图索引 bitmap and,并且会回表,都是单块读,其中回表的单块读在这里占大头(每次都有24383个单块读)的。 我们从统计信息看到 步骤2 有2094K 行 我们可以简单认为, 第三步 这个整个步骤(bitmap and +回表) 被整个执行了 2094K即200多万次。 不慢才怪优化后语句
explain plan for merge into HAHA a
using (select td03_flag, user_id
from z_temp1 b
where user_id in (select user_id
from HAHA where lx='pz')
) h
on (a.user_id = h.user_id)
when matched then
update set a.td03_flag = h.td03_flag;
这里需要创建两个索引
create index HAHA_IDX on HAHA(lx,user_id) ;
create index z_temp1_ind_uidtd03 on z_temp1(userid,td03_flag) ;
优化前SQL2个小时还没跑完
之后虽然执行时间对方没有反馈,但对方也没有再喊叫 看来满足需求了:)
优化虽易,乙方不易,且行且珍惜

MySQL'sBLOBissuitableforstoringbinarydatawithinarelationaldatabase,whileNoSQLoptionslikeMongoDB,Redis,andCassandraofferflexible,scalablesolutionsforunstructureddata.BLOBissimplerbutcanslowdownperformancewithlargedata;NoSQLprovidesbetterscalabilityand

ToaddauserinMySQL,use:CREATEUSER'username'@'host'IDENTIFIEDBY'password';Here'showtodoitsecurely:1)Choosethehostcarefullytocontrolaccess.2)SetresourcelimitswithoptionslikeMAX_QUERIES_PER_HOUR.3)Usestrong,uniquepasswords.4)EnforceSSL/TLSconnectionswith

ToavoidcommonmistakeswithstringdatatypesinMySQL,understandstringtypenuances,choosetherighttype,andmanageencodingandcollationsettingseffectively.1)UseCHARforfixed-lengthstrings,VARCHARforvariable-length,andTEXT/BLOBforlargerdata.2)Setcorrectcharacters

MySQloffersechar, Varchar, text, Anddenumforstringdata.usecharforfixed-Lengthstrings, VarcharerForvariable-Length, text forlarger text, AndenumforenforcingdataAntegritywithaetofvalues.

Optimizing MySQLBLOB requests can be done through the following strategies: 1. Reduce the frequency of BLOB query, use independent requests or delay loading; 2. Select the appropriate BLOB type (such as TINYBLOB); 3. Separate the BLOB data into separate tables; 4. Compress the BLOB data at the application layer; 5. Index the BLOB metadata. These methods can effectively improve performance by combining monitoring, caching and data sharding in actual applications.

Mastering the method of adding MySQL users is crucial for database administrators and developers because it ensures the security and access control of the database. 1) Create a new user using the CREATEUSER command, 2) Assign permissions through the GRANT command, 3) Use FLUSHPRIVILEGES to ensure permissions take effect, 4) Regularly audit and clean user accounts to maintain performance and security.

ChooseCHARforfixed-lengthdata,VARCHARforvariable-lengthdata,andTEXTforlargetextfields.1)CHARisefficientforconsistent-lengthdatalikecodes.2)VARCHARsuitsvariable-lengthdatalikenames,balancingflexibilityandperformance.3)TEXTisidealforlargetextslikeartic

Best practices for handling string data types and indexes in MySQL include: 1) Selecting the appropriate string type, such as CHAR for fixed length, VARCHAR for variable length, and TEXT for large text; 2) Be cautious in indexing, avoid over-indexing, and create indexes for common queries; 3) Use prefix indexes and full-text indexes to optimize long string searches; 4) Regularly monitor and optimize indexes to keep indexes small and efficient. Through these methods, we can balance read and write performance and improve database efficiency.


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

MinGW - Minimalist GNU for Windows
This project is in the process of being migrated to osdn.net/projects/mingw, you can continue to follow us there. MinGW: A native Windows port of the GNU Compiler Collection (GCC), freely distributable import libraries and header files for building native Windows applications; includes extensions to the MSVC runtime to support C99 functionality. All MinGW software can run on 64-bit Windows platforms.

Dreamweaver Mac version
Visual web development tools

MantisBT
Mantis is an easy-to-deploy web-based defect tracking tool designed to aid in product defect tracking. It requires PHP, MySQL and a web server. Check out our demo and hosting services.

WebStorm Mac version
Useful JavaScript development tools

Zend Studio 13.0.1
Powerful PHP integrated development environment
