跟着时下炒得火热的NOSQL潮流,学习了一下mongodb,记录在此,希望与感兴趣的同学一起研究! MongoDB概述 mongodb由C++写就,其名字来自hu mongo us这个单词的中间部分,是由10gen开发并维护的,关于它的一个最简洁描述为:scalable, high-performance, ope
跟着时下炒得火热的NOSQL潮流,学习了一下mongodb,记录在此,希望与感兴趣的同学一起研究!
MongoDB概述
mongodb由C++写就,其名字来自humongous这个单词的中间部分,是由10gen开发并维护的,关于它的一个最简洁描述为:scalable, high-performance, open source, schema-free, document-oriented database。MongoDB的主要目标是在键/值存储方式(提供了高性能和高度伸缩性)以及传统的RDBMS系统(丰富的功能)架起一座桥梁,集两者的优势于一身。
MongoDB特性:
l 面向文档存储
l 全索引支持,扩展到内部对象和内嵌数组
l 复制和高可用
l 自动分片支持云级扩展性
l 查询记录分析
l 动态查询
l 快速,就地更新
l 支持Map/Reduce操作
l GridFS文件系统
l 商业支持,培训和咨询
官网: http://www.mongodb.org/
配置
Master-slaves 模式
机器 | IP | 角色 |
test001 | 192.168.1.1 | master |
test002 | 192.168.1.2 | slave |
test003 | 192.168.1.3 | slave |
test004 | 192.168.1.4 | slave |
test005 | 192.168.1.5 | slave |
test006 | 192.168.1.6 | slave |
启动master:
1 |
|
添加repl用户:
1 2 3 |
|
启动slaves:
1 2 |
|
添加repl用户:
1 2 3 |
|
autoresync 参数会在系统发生意外情况造成主从数据不同步时,自动启动复制操作 (同步复制 10 分钟内仅执行一次)。除此之外,还可以用 –slavedelay 设定更新频率(秒)。
通常我们会使用主从方案实现读写分离,但需要设置 Slave_OK。
slaveOk
When querying a replica pair or replica set, drivers route their requests to the master mongod by default; to perform a query against an (arbitrarily-selected) slave, the query can be run with the slaveOk option. Here’s how to do so in the shell:
db.getMongo().setSlaveOk(); // enable querying a slave db.users.find(...)
Note: some language drivers permit specifying the slaveOk option on each find(), others make this a connection-wide setting. See your language’s driver for details.
Replica Set模式
Replica Sets 使用 n 个 Mongod 节点,构建具备自动容错转移(auto-failover)、自动恢复(auto-recovery) 的高可用方案。
机器 | IP | 角色 |
test001 | 192.168.1.1 | secondary |
test002 | 192.168.1.2 | secondary |
test003 | 192.168.1.3 | primary |
test004 | 192.168.1.4 | secondary |
test005 | 192.168.1.5 | secondary |
test006 | 192.168.1.6 | secondary |
test007 | 192.168.1.7 | secondary |
启动:
1 |
|
添加repl用户:
1 2 3 |
|
配置:
1 2 3 4 5 6 7 8 9 10 |
|
查看:
访问 http://test001 :28017/_replSet
或者
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 |
|
在Replica Sets上做操作后调用getlasterror使写操作同步到至少3台机器后才返回
db.runCommand( { getlasterror : 1 , w : 3 } )
注:该模式不支持auth功能,需要auth功能请选择m-s模式
Sharding模式
要构建一个 MongoDB Sharding Cluster,需要三种角色:
- Shard Server: mongod 实例,用于存储实际的数据块。
- Config Server: mongod 实例,存储了整个 Cluster Metadata,其中包括 chunk 信息。
- Route Server: mongos 实例,前端路由,客户端由此接入,且让整个集群看上去像单一进程数据库。
机器 | IP | 角色 |
test002 | 192.168.1.2 | mongod shard11:27017 |
test003 | 192.168.1.3 | mongod shard21:27017 |
test004 | 192.168.1.4 | mongod shard31:27017 |
test005 | 192.168.1.5 | mongod config1:20000 mongs1:30000 |
test006 | 192.168.1.6 | mongod config2:20000 mongs2:30000 |
test007 | 192.168.1.7 | mongod config3:20000 mongs3:30000 |
test008 | 192.168.1.8 | mongod shard12:27017 |
test009 | 192.168.1.9 | mongod shard22:27017 |
test010 | 192.168.1.10 | mongod shard32:27017 |
Shard配置
Shard1
[test002; test008]
test002:
1 |
|
test008:
1 |
|
初始化shard1
1 2 3 4 5 |
|
Shard2
[test003; test009]
test003:
1 |
|
test009:
1 |
|
初始化shard2
1 2 3 4 5 |
|
Shard3
[test004; test010]
test004:
1 |
|
test010:
1 |
|
初始化shard3
1 2 3 4 5 |
|
config server配置
[test005; test006; test007]
1 |
|
Mongos配置
[test005; test006; test007]
1 |
|
Route 转发请求到实际的目标服务进程,并将多个结果合并回传给客户端。Route 本身并不存储任何数据和状态,仅在启动时从 Config Server 获取信息。Config Server 上的任何变动都会传递给所有的 Route Process。
Configuring the Shard Cluster
1. 连接admin数据库
1 |
|
2. 加入shards
1 2 3 |
|
3. Listing shards
1 |
|
如果列出了以上3个shards,表示shards已经配置成功
4. 激活数据库和表分片
1 2 |
|
使用
shell操作数据库
超级用户相关:
1) 进入数据库admin
1 |
|
2) 增加或修改用户密码
1 |
|
3) 查看用户列表
1 |
|
4) 用户认证
1 |
|
5) 删除用户
1 |
|
6) 查看所有用户
1 |
|
7) 查看所有数据库
1 |
|
8) 查看所有的collection
1 |
|
9) 查看各collection的状态
1 |
|
10) 查看主从复制状态
1 |
|
11) 修复数据库
1 |
|
12) 设置记录profiling,0=off 1=slow 2=all
1 |
|
13) 查看profiling
1 |
|
14) 拷贝数据库
1 |
|
15) 删除collection
1 |
|
16) 删除当前的数据库
1 |
|
增加删除修改:
1) Insert
1 2 3 |
|
嵌套对象:
1 |
|
数组对象:
1 |
|
2) delete
删除name=’dump’的用户信息:
1 |
|
删除foo表所有信息:
1 |
|
3) update
//update foo set xx=4 where yy=6
//如果不存在则插入,允许修改多条记录
1 |
|
查询:
1 2 3 4 5 6 7 8 |
|
其他:
1 2 3 4 5 |
|
索引:
1(ascending),-1(descending)
1 2 3 4 5 6 7 |
|
MongoDB Drivers
C
C#
C++
Haskell
Java
Javascript
Perl
PHP
Python
Ruby
Scala (via Casbah)
Mongodb支持的client 编程api非常多,由于dump中心是建立在hadoop的基础上的,所以着重介绍java api,后面的测试程序采用的也是java api.
MongoDB in Java
下载MongoDB的Java驱动,把jar包(mongo-2.3.jar)扔到项目里去就行了,
Java中,Mongo对象是线程安全的,一个应用中应该只使用一个Mongo对象。Mongo对象会自动维护一个连接池,默认连接数为10。
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 |
|
MongoDB 测试
测试版本: 1.6.3
采用单线程分别插入100万,300万,500万,1000万数据和多个线程,每线程插入100万数据.
插入数据格式:
1 |
|
1) Master slaves模式
Insert
Per-thread rows | run time | Per-thread insert | Total-insert | Total rows | threads |
1000000 | 20 | 50000 | 50000 | 1000000 | 1 |
3000000 | 60 | 50000 | 50000 | 3000000 | 1 |
5000000 | 99 | 50505 | 50505 | 5000000 | 1 |
8000000 | 159 | 50314 | 50314 | 8000000 | 1 |
10000000 | 208 | 48076 | 48076 | 10000000 | 1 |
1000000 | 64 | 15625 | 31250 | 2000000 | 2 |
Mongodb只有主节点才能进行插入和更新操作.
Update
数据格式:
1 |
|
Per-thread rows | run time | Per-thread update | Total-update | Total rows | threads |
1000000 | 96 | 10416 | 10416 | 1000000 | 1 |
3000000 | 287 | 10452 | 10452 | 3000000 | 1 |
1000000 | 188 | 5319 | 15957 | 3000000 | 3 |
1000000 | 351 | 2849 | 14245 | 5000000 | 5 |
Select
以”_id”字段为key,返回整条记录
a) 客户端:单机多线程
Per-thread rows | run time | Per-thread select | Total-select | Total rows | threads |
1000000 | 72 | 13888 | 13888 | 1000000 | 1 |
1000000 | 129 | 7751 | 77519 | 10000000 | 10 |
1000000 | 554 | 1805 | 90252 | 50000000 | 50 |
1000000 | 1121 | 892 | 89206 | 100000000 | 100 |
1000000 | 2256 | 443 | 88652 | 200000000 | 200 |
b) 客户端:分布式多线程
程序部署在39台机器上
Per-thread rows | run time | Per-thread select | Total-select | Total rows | threads |
1000000 | 173 | 5780 | 5780*39=223470 | 1000000*39 | 1 |
1000000 | 1402 | 713 | 7132*39=278148 | 10000000*39 | 10 |
500000 | 1406 | 355 | 7112*39=277368 | 10000000*39 | 20 |
200000 | 1433 | 139 | 6978*39=272142 | 10000000*39 | 50 |
2) Replica Set 模式
Insert
Per-thread rows | run time | Per-thread insert | Total-insert | Total rows | threads |
1000000 | 40 | 25000 | 25000 | 1000000 | 1 |
3000000 | 117 | 25641 | 25641 | 3000000 | 1 |
5000000 | 211 | 23696 | 23696 | 5000000 | 1 |
8000000 | 289 | 27681 | 27681 | 8000000 | 1 |
10000000 | 388 | 25773 | 25773 | 10000000 | 1 |
1000000 | 83 | 12048 | 24096 | 2000000 | 2 |
1000000 | 210 | 4762 | 23809 | 5000000 | 5 |
Update
Per-thread rows | run time | Per-thread update | Total-update | Total rows | threads |
1000000 | 28 | 35714 | 35714 | 1000000 | 1 |
3000000 | 83 | 36144 | 36144 | 3000000 | 1 |
1000000 | 146 | 6849 | 20547 | 3000000 | 3 |
1000000 | 262 | 3816 | 19083 | 5000000 | 5 |
Select
以”_id”字段为key,返回整条记录
a) 客户端:单机多线程
Per-thread rows | run time | Per-thread select | Total-select | Total rows | threads |
1000000 | 198 | 5050 | 5050 | 1000000 | 1 |
1000000 | 264 | 3787 | 37878 | 10000000 | 10 |
1000000 | 436 | 2293 | 114678 | 50000000 | 50 |
1000000 | 754 | 1326 | 132625 | 100000000 | 100 |
1000000 | 1526 | 655 | 131061 | 200000000 | 200 |
b) 客户端:分布式多线程
程序部署在39台机器上
Per-thread rows | run time | Per-thread select | Total-select | Total rows | threads |
1000000 | 216 | 4629 | 4629*39=180531 | 1000000*39 | 1 |
1000000 | 1375 | 729 | 7293*39=284427 | 10000000*39 | 10 |
500000 | 1469 | 340 | 6807*39=265473 | 10000000*39 | 20 |
200000 | 1561 | 128 | 6406*39=249834 | 10000000*39 | 50 |
3) Sharding 模式
Insert
Per-thread rows | run time | Per-thread insert | Total-insert | Total rows | threads |
1000000 | 58 | 17241 | 17241 | 1000000 | 1 |
3000000 | 180 | 16666 | 16666 | 3000000 | 1 |
5000000 | 373 | 13404 | 13404 | 5000000 | 1 |
2000000 | 234 | 8547 | 17094 | 4000000 | 2 |
2000000 | 447 | 4474 | 22371 | 10000000 | 5 |
Update
Per-thread rows | run time | Per-thread update | Total-update | Total rows | threads |
1000000 | 38 | 26315 | 26315 | 1000000 | 1 |
3000000 | 115 | 26086 | 26086 | 3000000 | 1 |
1000000 | 64 | 15625 | 46875 | 3000000 | 3 |
1000000 | 93 | 10752 | 53763 | 5000000 | 5 |
Select
以”_id”字段为key,返回整条记录
a) 客户端:单机多线程
Per-thread rows | run time | Per-thread select | Total-select | Total rows | threads |
1000000 | 277 | 3610 | 3610 | 1000000 | 1 |
1000000 | 456 | 2192 | 21929 | 10000000 | 10 |
1000000 | 1158 | 863 | 43177 | 50000000 | 50 |
1000000 | 2299 | 434 | 43497 | 100000000 | 100 |
b) 客户端:分布式多线程
程序部署在39台机器上
Per-thread rows | run time | Per-thread select | Total-select | Total rows | threads |
1000000 | 659 | 1517 | 1517*39= 59163 | 1000000*39 | 1 |
1000000 | 8540 | 117 | 1170*39=45630 | 10000000*39 | 10 |
小结:
Mongodb在M-S和Repl-Set模式下查询效率还是不错的,区别在于Repl-Set模式如果有primary节点挂掉,系统自己会选举出另一个primary节点,不会影响后续的使用,原来的主节点恢复后自动成为secondary节点,而M-S模式一旦master 节点挂掉需要手工将别的slaves 节点修改成master,另外Repl-Set模式最多只能有7个节点.
由于sharding模式查询速度下降明显,耗时太长,所以只测试了2轮,估计他的威力应该在数据量非常大的环境下才能体现出来吧,以上数据仅供参考,现在只是简单的进行了测试,接下来会对源码进行一下研究,欢迎和感兴趣的同学多多交流!
?

本篇文章给大家带来了关于mysql的相关知识,其中主要介绍了关于索引优化器工作原理的相关内容,其中包括了MySQL Server的组成,MySQL优化器选择索引额原理以及SQL成本分析,最后通过 select 查询总结整个查询过程,下面一起来看一下,希望对大家有帮助。

随着互联网的发展,大数据分析和实时信息处理成为了企业的一个重要需求。为了满足这样的需求,传统的关系型数据库已经不再满足业务和技术发展的需要。相反,使用NoSQL数据库已经成为了一个重要的选择。在这篇文章中,我们将讨论SpringBoot与NoSQL数据库的整合使用,以实现现代应用程序的开发和部署。什么是NoSQL数据库?NoSQL是notonlySQL

数据库系统由4个部分构成:1、数据库,是指长期存储在计算机内的,有组织,可共享的数据的集合;2、硬件,是指构成计算机系统的各种物理设备,包括存储所需的外部设备;3、软件,包括操作系统、数据库管理系统及应用程序;4、人员,包括系统分析员和数据库设计人员、应用程序员(负责编写使用数据库的应用程序)、最终用户(利用接口或查询语言访问数据库)、数据库管理员(负责数据库的总体信息控制)。

在现代的网络应用程序开发中,PHP和NoSQL数据库已经成为了非常受欢迎的技术选择。在过去,PHP曾被广泛应用于开发动态网站和Web应用程序,而NoSQL数据库则是最近才出现的全新的数据存储技术,它提供了更加灵活和可扩展的解决方案。在这篇文章中,我们将会探讨PHP和NoSQL数据库在实际应用中的情况。PHP是一种服务器端编程语言,最初

数据库的“完整性”是指数据的正确性和相容性。完整性是指数据库中数据在逻辑上的一致性、正确性、有效性和相容性。完整性对于数据库系统的重要性:1、数据库完整性约束能够防止合法用户使用数据库时向数据库中添加不合语义的数据;2、合理的数据库完整性设计,能够同时兼顾数据库的完整性和系统的效能;3、完善的数据库完整性有助于尽早发现应用软件的错误。

结构层次是“数据库→数据表→记录→字段”;字段构成记录,记录构成数据表,数据表构成了数据库。数据库是一个完整的数据的记录的整体,一个数据库包含0到N个表,一个表包含0到N个字段,记录是表中的行。

mysql查询为什么会慢,关于这个问题,在实际开发经常会遇到,而面试中,也是个高频题。遇到这种问题,我们一般也会想到是因为索引。那除开索引之外,还有哪些因素会导致数据库查询变慢呢?

NoSQL(NotOnlySQL)数据库是近年来快速发展的一类数据库,与传统关系型数据库相比,其具有更好的可扩展性和性能,并支持更多的数据类型和数据存储方式。其中,MongoDB是一款使用文档数据库模型的NoSQL数据库,被广泛应用于Web应用、移动应用、物联网设备等领域。本文将介绍如何使用PHP编写MongoDB数据库的基本操作,并通过实例演示如何满足


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

Atom editor mac version download
The most popular open source editor

MantisBT
Mantis is an easy-to-deploy web-based defect tracking tool designed to aid in product defect tracking. It requires PHP, MySQL and a web server. Check out our demo and hosting services.

Dreamweaver Mac version
Visual web development tools

PhpStorm Mac version
The latest (2018.2.1) professional PHP integrated development tool

Safe Exam Browser
Safe Exam Browser is a secure browser environment for taking online exams securely. This software turns any computer into a secure workstation. It controls access to any utility and prevents students from using unauthorized resources.
