1. 现象 使用Cacti监控,有关于临时表的一个图形 可以看到正在使用的临时表Active Temp Tables的数量非常大,并且在非工作时间,也维持在400个左右。感觉非常奇怪,所以追查下! 2. 探索 首先,先验证下Cacti数据是否准确,已知Cacti数据是从SQLServer的sys.
1. 现象
使用Cacti监控,有关于临时表的一个图形
可以看到正在使用的临时表Active Temp Tables的数量非常大,并且在非工作时间,也维持在400个左右。感觉非常奇怪,所以追查下!
2. 探索
首先,先验证下Cacti数据是否准确,已知Cacti数据是从SQLServer的sys.dm_os_performance_counters 计数器DMV中取数的。所以查询下数据:
select * from sys.dm_os_performance_counters where counter_name ='Active Temp Tables'
查询结果和图中展示数据没有差别
然后,查询下目前的临时表究竟有哪些。使用如下SQL:
<span>use</span><span> tempdb </span><span>go</span> <span>select</span> <span>*</span> <span>from</span><span> sys.objects </span><span>where</span> name <span>like</span> <span>'</span><span>#%</span><span>'</span> <span>order</span> <span>by</span> create_date <span>asc</span>
查询结果如下:
可以得出如下结论:
1) 临时表的数量与Cacti图中的数量基本一致
2)从临时表的命名来看,基本为表变量对应的临时表。因为若是创建的临时表,命名为#temp_xxxx_随机标识
3)很多临时表,基本是表变量对应的,创建日期为十几天前,且最近并未更改,但SQLServer一直为销毁
3.未解谜题
按照已有的知识,表变量在所在批处理语句结束后,就会释放掉,为什么会有如此的temp tables 未被销毁呢?
20140701补充:
4.问题答案
见这篇博文 《TempDB--临时表的缓存》
解决问题的思路上,我之前也想过要查看临时表的内容,但临时表只在所属的会话内有效,无法查看内容,所以问题卡在这里。
上文给了一个思路是通过查看临时表中包含的列,通过表中列的内容,可以继续下一步的分析,直至问题的解决~
再次谢谢笑东风的回复!

Stored procedures are precompiled SQL statements in MySQL for improving performance and simplifying complex operations. 1. Improve performance: After the first compilation, subsequent calls do not need to be recompiled. 2. Improve security: Restrict data table access through permission control. 3. Simplify complex operations: combine multiple SQL statements to simplify application layer logic.

The working principle of MySQL query cache is to store the results of SELECT query, and when the same query is executed again, the cached results are directly returned. 1) Query cache improves database reading performance and finds cached results through hash values. 2) Simple configuration, set query_cache_type and query_cache_size in MySQL configuration file. 3) Use the SQL_NO_CACHE keyword to disable the cache of specific queries. 4) In high-frequency update environments, query cache may cause performance bottlenecks and needs to be optimized for use through monitoring and adjustment of parameters.

The reasons why MySQL is widely used in various projects include: 1. High performance and scalability, supporting multiple storage engines; 2. Easy to use and maintain, simple configuration and rich tools; 3. Rich ecosystem, attracting a large number of community and third-party tool support; 4. Cross-platform support, suitable for multiple operating systems.

The steps for upgrading MySQL database include: 1. Backup the database, 2. Stop the current MySQL service, 3. Install the new version of MySQL, 4. Start the new version of MySQL service, 5. Recover the database. Compatibility issues are required during the upgrade process, and advanced tools such as PerconaToolkit can be used for testing and optimization.

MySQL backup policies include logical backup, physical backup, incremental backup, replication-based backup, and cloud backup. 1. Logical backup uses mysqldump to export database structure and data, which is suitable for small databases and version migrations. 2. Physical backups are fast and comprehensive by copying data files, but require database consistency. 3. Incremental backup uses binary logging to record changes, which is suitable for large databases. 4. Replication-based backup reduces the impact on the production system by backing up from the server. 5. Cloud backups such as AmazonRDS provide automation solutions, but costs and control need to be considered. When selecting a policy, database size, downtime tolerance, recovery time, and recovery point goals should be considered.

MySQLclusteringenhancesdatabaserobustnessandscalabilitybydistributingdataacrossmultiplenodes.ItusestheNDBenginefordatareplicationandfaulttolerance,ensuringhighavailability.Setupinvolvesconfiguringmanagement,data,andSQLnodes,withcarefulmonitoringandpe

Optimizing database schema design in MySQL can improve performance through the following steps: 1. Index optimization: Create indexes on common query columns, balancing the overhead of query and inserting updates. 2. Table structure optimization: Reduce data redundancy through normalization or anti-normalization and improve access efficiency. 3. Data type selection: Use appropriate data types, such as INT instead of VARCHAR, to reduce storage space. 4. Partitioning and sub-table: For large data volumes, use partitioning and sub-table to disperse data to improve query and maintenance efficiency.

TooptimizeMySQLperformance,followthesesteps:1)Implementproperindexingtospeedupqueries,2)UseEXPLAINtoanalyzeandoptimizequeryperformance,3)Adjustserverconfigurationsettingslikeinnodb_buffer_pool_sizeandmax_connections,4)Usepartitioningforlargetablestoi


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

SublimeText3 Linux new version
SublimeText3 Linux latest version

SublimeText3 Chinese version
Chinese version, very easy to use

Dreamweaver CS6
Visual web development tools

EditPlus Chinese cracked version
Small size, syntax highlighting, does not support code prompt function

WebStorm Mac version
Useful JavaScript development tools
