客户 机页表的遍历 MMU的功能: 虚拟 机地址转换为物理地址,下面函数模拟此过程。 1.数据结构 struct guest_walker { int level; gfn_t table_gfn[PT_MAX_FULL_LEVELS]; pt_element_t ptes[PT_MAX_FULL_LEVELS]; gpa_t pte_gpa[PT_MAX_FULL_LEVELS]; unsign
客户机页表的遍历
MMU的功能:虚拟机地址转换为物理地址,下面函数模拟此过程。
1.数据结构
struct guest_walker {int level;
gfn_t table_gfn[PT_MAX_FULL_LEVELS];
pt_element_t ptes[PT_MAX_FULL_LEVELS];
gpa_t pte_gpa[PT_MAX_FULL_LEVELS];
unsigned pt_access;
unsigned pte_access;
gfn_t gfn;
u32 error_code;
};
+-------+
| |
+-------+
| c |
|-------| | |
+-------+
|-------|
|-------|
+-------+ 某级页表
a:页表项基地址
b:index的地址
c:index的地址内容
遍历完成后,数据结构内容为
gfn:客户机页表转换后物理地址页框号
假设PT_MAX_FULL_LEVELS=4
table_gfn【0-3】存放 4级页表项基地址
pte_gpa【0-3】 存放4级页表项中index基地址
ptes【0-3】 存放4级页表项中index基地址内容
pt_access: gfn的访问权限
pte_access: gfn的访问权限
2:客户机页表的遍历,也是虚拟MMU
static int FNAME(walk_addr)(struct guest_walker *walker,
struct kvm_vcpu *vcpu, gva_t addr,
int write_fault, int user_fault, int fetch_fault)
walker->level = vcpu->arch.mmu.root_level;//64位客户机系统,页表级数为4.
pte = vcpu->arch.cr3; //页目录基地址
for (;;) { //从64位客户机页目录开始遍历,最后到页表
index = PT_INDEX(addr, walker->level);
table_gfn = gpte_to_gfn(pte);
pte_gpa = gfn_to_gpa(table_gfn);
pte_gpa += index * sizeof(pt_element_t);
walker->table_gfn[walker->level - 1] = table_gfn; //存放页表基地址
walker->pte_gpa[walker->level - 1] = pte_gpa; //存放页表index基地址
if (kvm_read_guest(vcpu->kvm, pte_gpa, &pte, sizeof(pte)))//获取存放页表index基地址页表项
goto not_present;
pte_access = pt_access & FNAME(gpte_access)(vcpu, pte);//获取存放页表index基地址页表项权限
walker->ptes[walker->level - 1] = pte;//存放存放页表index基地址页表项
if ((walker->level == PT_PAGE_TABLE_LEVEL)//页表的最后一级存放客户机物理页地址
{
int lvl = walker->level;
walker->gfn = gpte_to_gfn_lvl(pte, lvl);//转换客户机物理页地址为客户机物理页框号
walker->gfn += (addr & PT_LVL_OFFSET_MASK(lvl))
>> PAGE_SHIFT;
break;
}
pt_access = pte_access;
--walker->level; //遍历下一级页表
}
//页表遍历完成后,获取页表的访问权限,存放到数据结构中
walker->pt_access = pt_access;
walker->pte_access = pte_access;
pgprintk("%s: pte %llx pte_access %x pt_access %x\n",
__func__, (u64)pte, pt_access, pte_access);
return 1;
}

InnoDBBufferPool reduces disk I/O by caching data and indexing pages, improving database performance. Its working principle includes: 1. Data reading: Read data from BufferPool; 2. Data writing: After modifying the data, write to BufferPool and refresh it to disk regularly; 3. Cache management: Use the LRU algorithm to manage cache pages; 4. Reading mechanism: Load adjacent data pages in advance. By sizing the BufferPool and using multiple instances, database performance can be optimized.

Compared with other programming languages, MySQL is mainly used to store and manage data, while other languages such as Python, Java, and C are used for logical processing and application development. MySQL is known for its high performance, scalability and cross-platform support, suitable for data management needs, while other languages have advantages in their respective fields such as data analytics, enterprise applications, and system programming.

MySQL is worth learning because it is a powerful open source database management system suitable for data storage, management and analysis. 1) MySQL is a relational database that uses SQL to operate data and is suitable for structured data management. 2) The SQL language is the key to interacting with MySQL and supports CRUD operations. 3) The working principle of MySQL includes client/server architecture, storage engine and query optimizer. 4) Basic usage includes creating databases and tables, and advanced usage involves joining tables using JOIN. 5) Common errors include syntax errors and permission issues, and debugging skills include checking syntax and using EXPLAIN commands. 6) Performance optimization involves the use of indexes, optimization of SQL statements and regular maintenance of databases.

MySQL is suitable for beginners to learn database skills. 1. Install MySQL server and client tools. 2. Understand basic SQL queries, such as SELECT. 3. Master data operations: create tables, insert, update, and delete data. 4. Learn advanced skills: subquery and window functions. 5. Debugging and optimization: Check syntax, use indexes, avoid SELECT*, and use LIMIT.

MySQL efficiently manages structured data through table structure and SQL query, and implements inter-table relationships through foreign keys. 1. Define the data format and type when creating a table. 2. Use foreign keys to establish relationships between tables. 3. Improve performance through indexing and query optimization. 4. Regularly backup and monitor databases to ensure data security and performance optimization.

MySQL is an open source relational database management system that is widely used in Web development. Its key features include: 1. Supports multiple storage engines, such as InnoDB and MyISAM, suitable for different scenarios; 2. Provides master-slave replication functions to facilitate load balancing and data backup; 3. Improve query efficiency through query optimization and index use.

SQL is used to interact with MySQL database to realize data addition, deletion, modification, inspection and database design. 1) SQL performs data operations through SELECT, INSERT, UPDATE, DELETE statements; 2) Use CREATE, ALTER, DROP statements for database design and management; 3) Complex queries and data analysis are implemented through SQL to improve business decision-making efficiency.

The basic operations of MySQL include creating databases, tables, and using SQL to perform CRUD operations on data. 1. Create a database: CREATEDATABASEmy_first_db; 2. Create a table: CREATETABLEbooks(idINTAUTO_INCREMENTPRIMARYKEY, titleVARCHAR(100)NOTNULL, authorVARCHAR(100)NOTNULL, published_yearINT); 3. Insert data: INSERTINTObooks(title, author, published_year)VA


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

Dreamweaver Mac version
Visual web development tools

mPDF
mPDF is a PHP library that can generate PDF files from UTF-8 encoded HTML. The original author, Ian Back, wrote mPDF to output PDF files "on the fly" from his website and handle different languages. It is slower than original scripts like HTML2FPDF and produces larger files when using Unicode fonts, but supports CSS styles etc. and has a lot of enhancements. Supports almost all languages, including RTL (Arabic and Hebrew) and CJK (Chinese, Japanese and Korean). Supports nested block-level elements (such as P, DIV),

SublimeText3 Chinese version
Chinese version, very easy to use

WebStorm Mac version
Useful JavaScript development tools

MinGW - Minimalist GNU for Windows
This project is in the process of being migrated to osdn.net/projects/mingw, you can continue to follow us there. MinGW: A native Windows port of the GNU Compiler Collection (GCC), freely distributable import libraries and header files for building native Windows applications; includes extensions to the MSVC runtime to support C99 functionality. All MinGW software can run on 64-bit Windows platforms.