实例演示使用并行和非并行选项的性能差异
比较direct方式使用并行和非并行选项的性能差异。 并行测试 创建测试表 create table sqlldr_paral nologging PARTITION BY HASH (sfzh) (partition p1 tablespace users , partition p2tablespace zdry_tbs2 ) AS SELECT *FROM sfxx2 where 1=2 ; sqlldr_pa
比较direct方式使用并行和非并行选项的性能差异。
并行测试
创建测试表
create table sqlldr_paral
nologging
PARTITION BY HASH (sfzh)
(partition p1 tablespace users , partition p2tablespace zdry_tbs2 )
AS SELECT *FROM sfxx2 where 1=2 ;
sqlldr_paral.ctl
LOAD DATA
INFILE 'd:\flatfile\flatfile.dat'
APPEND
INTO TABLE sqlldr_paral
fields terminated by X'23'
TRAILING NULLCOLS
(zj,
…字段太多省略
cjdwdm)
sqlldr_paral.par
USERID=zdrygk/zdrygk
CONTROL='d:\flatfile\sqlldr_paral.ctl'
DATA='d:\flatfile\flatfile.dat'
LOG='d:\flatfile\sqlldr_paral.log'
DIRECT=true
parallel=true
ERRORS=10000
执行
D:\flatfile>sqlldrparfile=d:\flatfile\sqlldr_paral.par
SQL*Loader: Release 11.2.0.1.0 - Production onMon Jan 7 23:21:42 2013
Copyright (c) 1982, 2009, Oracle and/or itsaffiliates. All rights reserved.
Load completed - logical record count 3022375.
sqlldr_paral.log
Control File: d:\flatfile\sqlldr_paral.ctl
Data File: d:\flatfile\flatfile.dat
BadFile: d:\flatfile\flatfile.bad
DiscardFile: none specified
(Allowall discards)
Number to load: ALL
Number to skip: 0
Errors allowed: 10000
Continuation: none specified
Path used: Direct- with parallel option. -----这里指定了并行选项
Table SQLLDR_PARAL, loaded from every logicalrecord.
Insert option in effect for this table: APPEND
TRAILING NULLCOLS option in effect
Table SQLLDR_PARAL:
3017264Rows successfully loaded.
5111Rows not loaded due to data errors.
0 Rows not loaded because all WHEN clauseswere failed.
0 Rowsnot loaded because all fields were null.
Dateconversion cache disabled due to overflow (default size: 1000)
Partition P1: 1509091 Rows loaded.
Partition P2: 1508173 Rows loaded.
Bind array size not used in direct path.
Column array rows : 5000
Stream buffer bytes: 256000
Read buffer bytes: 1048576
Total logical records skipped: 0
Total logical records read: 3022375
Total logical records rejected: 5111
Total logical records discarded: 0
Total stream buffers loaded by SQL*Loader mainthread: 1301
Total stream buffers loaded by SQL*Loader loadthread: 3901
Run began on Mon Jan 07 23:21:42 2013
Run ended on Mon Jan 07 23:22:18 2013
Elapsed time was: 00:00:35.91
CPU time was: 00:00:25.79
非并行测试
创建测试表
create table sqlldr_nopal
nologging
PARTITION BY HASH (sfzh)
(partition p1 tablespace users , partition p2tablespace zdry_tbs2 )
AS SELECT *FROM sfxx2 where 1=2 ;
sqlldr_nopar.ctl
LOAD DATA
INFILE 'd:\flatfile\flatfile.dat'
APPEND
INTO TABLEsqlldr_nopar
fields terminated by X'23'
TRAILING NULLCOLS
(zj,
…字段太多省略
cjdwdm)
sqlldr_nopar.par
这里删除了并行选项
USERID=zdrygk/zdrygk
CONTROL='d:\flatfile\sqlldr_nopar.ctl'
DATA='d:\flatfile\flatfile.dat'
LOG='d:\flatfile\sqlldr_nopar.log'
DIRECT=true
ERRORS=10000
执行
D:\flatfile>sqlldrparfile=d:\flatfile\sqlldr_nopar.par
SQL*Loader: Release 11.2.0.1.0 - Production onMon Jan 7 23:20:54 2013
Copyright (c) 1982, 2009, Oracle and/or itsaffiliates. All rights reserved.
Load completed - logical record count 3022375.
sqlldr_nopar.log
Control File: d:\flatfile\sqlldr_nopar.ctl
Data File: d:\flatfile\flatfile.dat
BadFile: d:\flatfile\flatfile.bad
DiscardFile: none specified
(Allowall discards)
Number to load: ALL
Number to skip: 0
Errors allowed: 10000
Continuation: none specified
Path used: Direct ----这里只是指定了直接路径加载
Table SQLLDR_NOPAR, loaded from every logicalrecord.
Insert option in effect for this table: APPEND
TRAILING NULLCOLS option in effect
Table SQLLDR_NOPAR:
3017264Rows successfully loaded.
5111Rows not loaded due to data errors.
0 Rows not loaded because all WHEN clauseswere failed.
0 Rowsnot loaded because all fields were null.
Dateconversion cache disabled due to overflow (default size: 1000)
Partition P1: 1509091 Rows loaded.
Partition P2: 1508173 Rows loaded.
Bind array size not used in direct path.
Column array rows : 5000
Stream buffer bytes: 256000
Read buffer bytes: 1048576
Total logical records skipped: 0
Total logical records read: 3022375
Total logical records rejected: 5111
Total logical records discarded: 0
Total stream buffers loaded by SQL*Loader mainthread: 1301
Total stream buffers loaded by SQL*Loader loadthread: 3901
Run began on Mon Jan 07 23:20:54 2013
Run ended on Mon Jan 07 23:21:28 2013
Elapsed time was: 00:00:33.81
CPU time was: 00:00:25.32
分析
Load Mode |
Elapsed time(ss.99) |
Direct |
33.81 |
Direct + parallel |
35.91 |
笔者做了多次试验,除了第一次消耗时间较长(因为表空间自动拓展),后面的实验中两种模式的用时大致相同。自己猜测在使用Direct 直接路径加载的情况下,多线程并不能提高效率。
在Util中找到关于sql*loader command line的描述
PARALLEL(parallel load)
Default: false
PARALLELspecifies whether direct loads canoperate in multiple concurrent sessions
to load data into the same table.
parallel这个参数用来设定使用direct loads的时候是否使用并发的session去加载数据到相同的表中。
于是测试了多文件,多session加载数据的情况。
D:\flatfile>sqluldr2 user=zdrygk/zdrygk@orclquery=sfxx2 degree=8 file=d:\flatfile\ldrfiles%t.dat field=0x23 size=300MB
0rows exported at 2013-01-08 00:07:26, size 0 MB.
output file d:\flatfile\ldrfiles1357574846.dat closed at 707972 rows,size 304 MB.
output file d:\flatfile\ldrfiles1357574861.dat closed at 697498 rows,size 604 MB.
output file d:\flatfile\ldrfiles1357574876.dat closed at 701379 rows,size 904 MB.
output file d:\flatfile\ldrfiles1357574891.dat closed at 692556 rows,size 1204 MB.
222868rows exported at 2013-01-08 00:08:31, size 1300 MB.
output file d:\flatfile\ldrfiles1357574906.dat closed at 222868 rows,size 1300 MB.
一共5个文件。
多文件并行测试
如果指定了parallel选项,sqlldr运行的时候会对表加4级锁,允许多个sqlldr session同时对同一个表执行加载作用。在我们执行了truncate 操作后对表进行并行加载操作。
parallelpar1文件
USERID=zdrygk/zdrygk
CONTROL='D:\flatfile\multifile\paral\sqlldr_paral_1.ctl'
DATA='D:\flatfile\multifile\ldrfiles1357574846.dat'
LOG='D:\flatfile\multifile\paral\sqlldr_paral_1.log'
DIRECT=true
parallel=true
ERRORS=10000
parallel par2、3、4、5的内容大致相同。
在windows下只能打开多个窗口,通过复制粘贴的方法保证并行了。
执行
sqlldrparfile=D:\flatfile\multifile\paral\sqlldr_paral_1.par
sqlldrparfile=D:\flatfile\multifile\paral\sqlldr_paral_2.par
sqlldrparfile=D:\flatfile\multifile\paral\sqlldr_paral_3.par
sqlldr parfile=D:\flatfile\multifile\paral\sqlldr_paral_4.par
sqlldrparfile=D:\flatfile\multifile\paral\sqlldr_paral_5.par
最后得到了5个log文件关键内容:
log1
Run began on Tue Jan 08 01:51:11 2013
Run ended on Tue Jan 08 01:51:21 2013
Elapsed time was: 00:00:09.42
CPU time was: 00:00:06.43
…
中间的几个log文件省略
log5
Run began on Tue Jan 08 01:51:34 2013
Run ended on Tue Jan 08 01:51:38 2013
Elapsed time was: 00:00:03.27
CPU time was: 00:00:02.03
因为最后一个sqlldr session 是最后一个执行结束的,所以需要计算并行sqlldr的执行消耗时间,只需要使用log5中的结束时间减去log1中的开始时间即可。
01:51:38-01:51:11=22秒
因为不是使用程序执行这几个sqlldr程序,复制、粘贴、执行之间会有空隙。真实用时应该比22秒这个数字要小的多。
多文件非并行测试
因为如果没有指定parallel选项,sqlldr运行的时候会对表加6级锁,其他sqlldr session会无法工作,所以只能串行的执行sqlldr操作。在我们执行了truncate操作之后对表进行串行加载操作。
noparallelpar1文件
USERID=zdrygk/zdrygk
CONTROL='D:\flatfile\multifile\nopar\sqlldr_nopar_1.ctl'
DATA='D:\flatfile\multifile\ldrfiles1357574846.dat'
LOG='D:\flatfile\multifile\nopar\sqlldr_nopar_1.log'
DIRECT=true
ERRORS=10000
noparallel par2、3、4、5的内容大致相同。
执行
sqlldrparfile=D:\flatfile\multifile\nopar\sqlldr_nopar_1.par
sqlldr parfile=D:\flatfile\multifile\nopar\sqlldr_nopar_2.par
sqlldrparfile=D:\flatfile\multifile\nopar\sqlldr_nopar_3.par
sqlldrparfile=D:\flatfile\multifile\nopar\sqlldr_nopar_4.par
sqlldrparfile=D:\flatfile\multifile\nopar\sqlldr_nopar_5.par
最后得到了5个log文件关键内容:
log1
Run began on Tue Jan 08 01:47:35 2013
Run ended on Tue Jan 08 01:47:48 2013
Elapsed time was: 00:00:12.61
CPU time was: 00:00:06.92
…
中间的几个log文件省略
log5
Run began on Tue Jan 08 01:48:26 2013
Run ended on Tue Jan 08 01:48:30 2013
Elapsed time was: 00:00:03.68
CPU time was: 00:00:02.01
最后执行时间相加
12.61+ 12.54+ 12.09+ 11.40+ 03.68=52.32秒
总结
Load Mode |
Elapsed time(ss.99) |
Direct |
52.32 |
Direct + parallel |
22 |
sqlldr是cpu密集型的操作,并且多线程,只有在使用多个数据文件,并且开启多个sqlldr session的时候才会有效果。并且效果非常明显。在消耗更多cpu和内存的同时能够给予非常高的效率,在真实情况下与单文件加载相比效率相差有1倍以上。

TograntpermissionstonewMySQLusers,followthesesteps:1)AccessMySQLasauserwithsufficientprivileges,2)CreateanewuserwiththeCREATEUSERcommand,3)UsetheGRANTcommandtospecifypermissionslikeSELECT,INSERT,UPDATE,orALLPRIVILEGESonspecificdatabasesortables,and4)

ToaddusersinMySQLeffectivelyandsecurely,followthesesteps:1)UsetheCREATEUSERstatementtoaddanewuser,specifyingthehostandastrongpassword.2)GrantnecessaryprivilegesusingtheGRANTstatement,adheringtotheprincipleofleastprivilege.3)Implementsecuritymeasuresl

ToaddanewuserwithcomplexpermissionsinMySQL,followthesesteps:1)CreatetheuserwithCREATEUSER'newuser'@'localhost'IDENTIFIEDBY'password';.2)Grantreadaccesstoalltablesin'mydatabase'withGRANTSELECTONmydatabase.TO'newuser'@'localhost';.3)Grantwriteaccessto'

The string data types in MySQL include CHAR, VARCHAR, BINARY, VARBINARY, BLOB, and TEXT. The collations determine the comparison and sorting of strings. 1.CHAR is suitable for fixed-length strings, VARCHAR is suitable for variable-length strings. 2.BINARY and VARBINARY are used for binary data, and BLOB and TEXT are used for large object data. 3. Sorting rules such as utf8mb4_unicode_ci ignores upper and lower case and is suitable for user names; utf8mb4_bin is case sensitive and is suitable for fields that require precise comparison.

The best MySQLVARCHAR column length selection should be based on data analysis, consider future growth, evaluate performance impacts, and character set requirements. 1) Analyze the data to determine typical lengths; 2) Reserve future expansion space; 3) Pay attention to the impact of large lengths on performance; 4) Consider the impact of character sets on storage. Through these steps, the efficiency and scalability of the database can be optimized.

MySQLBLOBshavelimits:TINYBLOB(255bytes),BLOB(65,535bytes),MEDIUMBLOB(16,777,215bytes),andLONGBLOB(4,294,967,295bytes).TouseBLOBseffectively:1)ConsiderperformanceimpactsandstorelargeBLOBsexternally;2)Managebackupsandreplicationcarefully;3)Usepathsinst

The best tools and technologies for automating the creation of users in MySQL include: 1. MySQLWorkbench, suitable for small to medium-sized environments, easy to use but high resource consumption; 2. Ansible, suitable for multi-server environments, simple but steep learning curve; 3. Custom Python scripts, flexible but need to ensure script security; 4. Puppet and Chef, suitable for large-scale environments, complex but scalable. Scale, learning curve and integration needs should be considered when choosing.

Yes,youcansearchinsideaBLOBinMySQLusingspecifictechniques.1)ConverttheBLOBtoaUTF-8stringwithCONVERTfunctionandsearchusingLIKE.2)ForcompressedBLOBs,useUNCOMPRESSbeforeconversion.3)Considerperformanceimpactsanddataencoding.4)Forcomplexdata,externalproc


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

MantisBT
Mantis is an easy-to-deploy web-based defect tracking tool designed to aid in product defect tracking. It requires PHP, MySQL and a web server. Check out our demo and hosting services.

Atom editor mac version download
The most popular open source editor

MinGW - Minimalist GNU for Windows
This project is in the process of being migrated to osdn.net/projects/mingw, you can continue to follow us there. MinGW: A native Windows port of the GNU Compiler Collection (GCC), freely distributable import libraries and header files for building native Windows applications; includes extensions to the MSVC runtime to support C99 functionality. All MinGW software can run on 64-bit Windows platforms.

Dreamweaver Mac version
Visual web development tools

Zend Studio 13.0.1
Powerful PHP integrated development environment
