Home >Database >Mysql Tutorial >hive查询hbase

hive查询hbase

WBOYWBOYWBOYWBOYWBOYWBOYWBOYWBOYWBOYWBOYWBOYWBOYWB
WBOYWBOYWBOYWBOYWBOYWBOYWBOYWBOYWBOYWBOYWBOYWBOYWBOriginal
2016-06-07 15:22:401296browse

1. 背景 2.hbase查询的确是不太方便,除了指定rowkey,或者通过指定startkey stopkey进行scan之外,没有更有效的查询方式 如果想通过列值过滤,只能全表扫描了 如果要搞什么group by或者order by(除非你的rowkey做了相应设计) 更是没法弄 在传统的mysql/or

1. 背景

2.hbase查询的确是不太方便,除了指定rowkey,或者通过指定startkey stopkey进行scan之外,没有更有效的查询方式 如果想通过列值过滤,只能全表扫描了 如果要搞什么group by或者order by(除非你的rowkey做了相应设计) 更是没法弄 在传统的mysql/oracle得心应手的查询在hbase上就是束手束脚

3.当然可以通过写hadoop job解决问题,但为了查询去写job,代价未免有点高 于是hive出现了

4.有两个方法可以集成hive和hbase

1.使用HBaseStorageHandler,这个会直接操作HBase,可能会对线上产生影响

2.将HBase定期导入到HDFS,再通过hive访问HDFS

下面将详述第二种方法

HDFS导入

1.使用datax将HBase表导入到HDFS上,比如/group/wireless-arctic/task/arctic_task

2.hive产生外部表,从而避免导入数据
 CREATE EXTERNAL TABLE task_history (
 biz_type string,
 cid string,
 content string,
 ctime string,
 gmt_create string,
 hostName string,
 item string,
 mtime string,
 otags string,
 priority string,
 retry string,
 result string,
 srcImages string,
 src_url string,
 status string,
 summary string,
 task_type string,
 title string,
 userId string,
 userNick string,
 utags string,
 writer string
 )
 ROW FORMAT DELIMITED FIELDS TERMINATED BY '\001'
 LOCATION '/group/wireless-arctic/task';location是云梯文件的目录

3.测试
 select cid,result from task_history limit 10;
 Total MapReduce jobs = 1
 Launching Job 1 out of 1
 Number of reduce tasks is set to 0 since there's no reduce operator
 Selecting distributed mode: Input Size (= 2578823293 = 2 gigabytes 411 megabytes 366 kilobytes 125 bytes) is larger than hive.exec.mode.local.auto.inputbytes.max (= 134217728 = 128 megabytes 0 kilobytes 0 bytes)
 Starting Job = job_201311281255_6734353, Tracking URL = http://hdpjt2.alibaba-inc.com/jobdetails.jsp?jobid=job_201311281255_6734353
 Kill Command = /home/hadoop/hadoop-current/bin/../bin/hadoop job  -Dmapred.job.tracker=hdpjt:9001 -kill job_201311281255_6734353
 Hadoop job information for Stage-1: number of mappers: 10; number of reducers: 0
 2013-12-19 18:53:02,891 Stage-1 map = 0%,  reduce = 0%
 2013-12-19 18:53:11,017 Stage-1 map = 50%,  reduce = 0%
 2013-12-19 18:53:12,033 Stage-1 map = 90%,  reduce = 0%
 2013-12-19 18:53:19,394 Stage-1 map = 100%,  reduce = 100%
 Ended Job = job_201311281255_6734353
 OK
 200011928538    success
 200011928538    success
 200011909281    success
 200011928474    success
 200011909281    success
 200011928474    success
 110010569498    failure:userId:1782836127,contentId:110010569498  ImageFlow,call error and ret:1
 110010523403    success
 110010523921    success
 110010524299    success
 Time taken: 23.137 seconds = 23 seconds 137 milliseconds添加分区及自动化

1.完成了上面的步骤,你就可以查询数据了,但面临一个问题,数据更新怎么办?

一个比较通用的做法就是每天跑一个定时任务将HBase表dump到HDFS,即每天一个快照每天的快照可以存放在以日期命名的目录中,这样可以保存多份快照,出了问题也好追踪2.hive如何利用这每天的快照?

那就是hive分区

分区的本意是数据量大了切分数据,但目前我们并未如此使用,而是利用分区来区分快照删除之前的表

drop table task_history;产生一张分区表
CREATE EXTERNAL TABLE task_history (
biz_type string,
cid string,
content string,
ctime string,
gmt_create string,
hostName string,
item string,
mtime string,
otags string,
priority string,
retry string,
result string,
srcImages string,
src_url string,
status string,
summary string,
task_type string,
title string,
userId string,
userNick string,
utags string,
writer string
)
PARTITIONED BY (dt string)
ROW FORMAT DELIMITED FIELDS TERMINATED BY '\001'
LOCATION '/group/wireless-arctic/task';其实就是在之前的建表语句中加了一行PARTITIONED BY (dt string)

添加分区

ALTER TABLE task_history ADD PARTITION(dt='20131223') LOCATION '/group/wireless-arctic/task/20131223';3.如何自动化

通过工具比如datax或者其他导出工具将HBase表导出到HDFS,正如前面提到的每天一个目录(以日期命名)

将每天的数据目录挂载到hive分区
hive -e "ALTER TABLE task_history ADD PARTITION(dt=`date -d yesterday +%Y%m%d`) LOCATION '/group/wireless-arctic/task/`date -d yesterday +%Y%m%d`';"将前面2个步骤的脚本整合到crontab 中就可以做到自动化了

最后如何通过分区查询
select * from task_history where dt='20131223' limit 10;即加上分区查询条件dt='20131223'

Statement:
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn