解剖 SQLSERVER 第十六篇 OrcaMDF RawDatabase --MDF文件的瑞士军刀(译) http://improve.dk/orcamdf-rawdatabase-a-swiss-army-knife-for-mdf-files/ 当我最初开始开发OrcaMDF的时候我只有一个目标,比市面上大部分的书要获取MDF文件内部的更深层次的知识
解剖SQLSERVER 第十六篇 OrcaMDF RawDatabase --MDF文件的瑞士军刀(译)
http://improve.dk/orcamdf-rawdatabase-a-swiss-army-knife-for-mdf-files/
当我最初开始开发OrcaMDF的时候我只有一个目标,比市面上大部分的书要获取MDF文件内部的更深层次的知识
随着时间的推移,OrcaMDF确实做到了。在我当初没有计划的时候,OrcaMDF 已经可以解析系统表,元数据,甚至DMVs。我还做了一个简单UI,让OrcaMDF 更加容易使用。
这很好,但是带来的代价是软件非常复杂。为了自动解析元数据 例如schemas, partitions, allocation units 还有其他的东西,更不要提对于堆表和索引的细节的抽象层了,抽象层需要很多代码并且需要更多的数据库了解。鉴于不同SQLSERVER版本之间元数据的改变,OrcaMDF 目前仅支持SQL Server 2008 R2。然而,数据结构是相对稳定的,元数据的存储方式只有一点不同,使用DMVs暴露数据等等。要让OrcaMDF 正常运行,需要元数据是完好无损的,这就导致当SQLSERVER损坏的时候OrcaMDF 也是一样的。遇到损坏的boot page吗?无论SQLSERVER还是 OrcaMDF 都不能解析数据库
向RawDatabase问好
我在憧憬OrcaMDF 的未来 和如何使用他才是最有用的。我能够不断增加新的特性进去以使SQLSERVER支持什么功能他也支持,最终使得他能100%解析MDF文件。但是意义何在?当然,这是一个很好的学习机会,不过重点是,你使用软件读取数据,SQLSERVER能比你做得更好。所以,该如何选择?
RawDatabase, 参照Database 类,他不会尝试解析任何东西除非你让他去解析。
他不会自动解析schemas。他不知道系统表。他不知道DMVs。然而他知道SQLSERVER数据结构和给他一个接口他可以直接读取MDF文件。
让RawDatabase 只解析数据结构意味着他可以跳过损坏的系统表或者损坏的数据
例子
这个工具还在开发的早起,不过让我展示一下使用RawDatabase能够做什么东西。
当我运行LINQPad上的代码,他很容易的显示出结果,结果只是标准的.NET 对象。
所有的例子都在AdventureWorks 2008R2 LT (Light Weight)数据库上运行
获取单个页面
很多时候,我们只需要解析单个页面
<span>//</span><span> Get page 197 in file 1</span> <span>var</span> db = <span>new</span> RawDatabase(<span>@"</span><span>C:\AWLT2008R2.mdf</span><span>"</span><span>); db.GetPage(</span><span>1</span>, <span>197</span>).Dump();
解析页头
现在我们获取到页面,我们如何把页头dump出来
<span>//</span><span> Get the header of page 197 in file 1</span> <span>var</span> db = <span>new</span> RawDatabase(<span>@"</span><span>C:\AWLT2008R2.mdf</span><span>"</span><span>); db.GetPage(</span><span>1</span>, <span>197</span>).Header.Dump();
解析行偏移阵列
就像页头那样,我们也可以把页尾的行偏移阵列条目dump出来
<span>//</span><span> Get the slot array entries of page 197 in file 1</span> <span>var</span> db = <span>new</span> RawDatabase(<span>@"</span><span>C:\AWLT2008R2.mdf</span><span>"</span><span>); db.GetPage(</span><span>1</span>, <span>197</span>).SlotArray.Dump();
解析数据记录
当获取到行偏移条目的原始数据,你通常想看一下数据行记录的内容。幸运的是,这也很容易做到
<span>//</span><span> Get all records on page 197 in file 1</span> <span>var</span> db = <span>new</span> RawDatabase(<span>@"</span><span>C:\AWLT2008R2.mdf</span><span>"</span><span>); db.GetPage(</span><span>1</span>, <span>197</span>).Records.Dump();
从记录中检索数据
一旦你得到记录,你现在可以利用FixedLengthData 或者 VariableLengthOffsetValues 属性
去获取原始的定长数据内容和变长数据内容。然而,你肯定只想获取到实际的已解析的数据值。
对于解析,OrcaMDF会帮你解析,你只需要为他提供schema.
<span>//</span><span> Read the record contents of the first record on page 197 of file 1</span> <span>var</span> db = <span>new</span> RawDatabase(<span>@"</span><span>C:\AWLT2008R2.mdf</span><span>"</span><span>); RawPrimaryRecord firstRecord </span>= (RawPrimaryRecord)db.GetPage(<span>1</span>, <span>197</span><span>).Records.First(); </span><span>var</span> values = RawColumnParser.Parse(firstRecord, <span>new</span><span> IRawType[] { RawType.Int(</span><span>"</span><span>AddressID</span><span>"</span><span>), RawType.NVarchar(</span><span>"</span><span>AddressLine1</span><span>"</span><span>), RawType.NVarchar(</span><span>"</span><span>AddressLine2</span><span>"</span><span>), RawType.NVarchar(</span><span>"</span><span>City</span><span>"</span><span>), RawType.NVarchar(</span><span>"</span><span>StateProvince</span><span>"</span><span>), RawType.NVarchar(</span><span>"</span><span>CountryRegion</span><span>"</span><span>), RawType.NVarchar(</span><span>"</span><span>PostalCode</span><span>"</span><span>), RawType.UniqueIdentifier(</span><span>"</span><span>rowguid</span><span>"</span><span>), RawType.DateTime(</span><span>"</span><span>ModifiedDate</span><span>"</span><span>) }); values.Dump();</span>
RawColumnParser.Parse方法做的事情是 跟他一个schema,他帮你自动将raw bytes转换为Dictionary
而value就是数据列的实际值,例如int,short,guid,string等等。让你的用户给定schema, OrcaMDF 可以跳过大量的依赖的元数据进行解析,因此可以忽略可能的元数据错误带来的数据读取失败。
由于页头已经给出了 NextPageID 和 PreviousPageID属性 ,这能够让软件简单的遍历链表中的所有页面,并解析这些页面里面的数据 --他基本上是根据给定的allocation unit来进行扫描
过滤页面
除非检索一个特定的页面,RawDatabase 也有一个页面属性能够枚举数据库中的所有页面。
使用这个属性,举个例子,获取数据库中所有的IAM页面的列表
<span>//</span><span> Get a list of all IAM pages in the database</span> <span>var</span> db = <span>new</span> RawDatabase(<span>@"</span><span>C:\AWLT2008R2.mdf</span><span>"</span><span>); db.Pages .Where(x </span>=> x.Header.Type ==<span> PageType.IAM) .Dump();</span>
并且由于这是使用LINQ技术,这很容易去设计你想要的属性。
举个例子,你可以获取所有的 index pages 和他们的 slot counts 就像这样:
<span>//</span><span> Get all index pages and their slot counts</span> <span>var</span> db = <span>new</span> RawDatabase(<span>@"</span><span>C:\AWLT2008R2.mdf</span><span>"</span><span>); db.Pages .Where(x </span>=> x.Header.Type ==<span> PageType.Index) .Select(x </span>=> <span>new</span><span> { x.PageID, x.Header.SlotCnt }).Dump();</span>
或者假设你想获得如下条件的页面
1、页面里面至少有一条记录
2、free space空间至少有7000 bytes
下面是page id, free count, record count 和 平均记录大小的输出
<span>var</span> db = <span>new</span> RawDatabase(<span>@"</span><span>C:\AWLT2008R2.mdf</span><span>"</span><span>); db.Pages .Where(x </span>=> x.Header.FreeCnt > <span>7000</span><span>) .Where(x </span>=> x.Header.SlotCnt >= <span>1</span><span>) .Where(x </span>=> x.Header.Type ==<span> PageType.Data) .Select(x </span>=> <span>new</span><span> { x.PageID, x.Header.FreeCnt, RecordCount </span>=<span> x.Records.Count(), RecordSize </span>= (<span>8096</span> - x.Header.FreeCnt) /<span> x.Records.Count() }).Dump();</span>
最后一个例子,,假设你只有一个MDF文件并且你已经忘记了有哪些对象存储在MDF文件里面。
不要紧,我们只需要查询系统表sysschobjs !sysschobjs 系统表包含了所有对象的数据
并且幸运的是,他的object ID 是 34。利用这些信息,我们可以把所有属于object ID 34的数据页面
过滤出来,并且从这些页面里读取记录并只需要解析这个表的前两列(你可以定义一个分部schema, 只要你在最后忽略列)
最后我们只需要把名称dump出来(当然我们可以把表里的所有列都查询出来,如果我们想的话)
<span>SELECT</span> <span>*</span> <span>FROM</span> sys.sysschobjs
<span>var</span> db = <span>new</span> RawDatabase(<span>@"</span><span>C:\AWLT2008R2.mdf</span><span>"</span><span>); </span><span>var</span> records =<span> db.Pages .Where(x </span>=> x.Header.ObjectID == <span>34</span> && x.Header.Type ==<span> PageType.Data) .SelectMany(x </span>=><span> x.Records); </span><span>var</span> rows = records.Select(x => RawColumnParser.Parse((RawPrimaryRecord)x, <span>new</span><span> IRawType[] { RawType.Int(</span><span>"</span><span>id</span><span>"</span><span>), RawType.NVarchar(</span><span>"</span><span>name</span><span>"</span><span>) })); rows.Select(x </span>=> x[<span>"</span><span>name</span><span>"</span>]).Dump();
兼容性
可以看到 RawDatabase并不依赖于元数据,这很容易兼容多个版本的SQLSERVER。
因此,我很高兴的宣布:RawDatabase 完全兼容SQL Server 2005, 2008, 2008R2 , 2012.
这也有可能兼容2014,不过我还未进行测试。说到测试,所有的单元测试都是自动运行的
在测试期间使用AdventureWorksLT for 2005, 2008, 2008R2 and 2012 。
现在有一些测试demo来让OrcaMDF RawDatabase去解析AdventureWorks LT 数据库里面每个表的每条记录
数据损坏
其中一个有趣的使用RawDatabase 的方法是用来附加损坏的数据库。你可以检索特定object id的所有页面然后硬解析每个页面
无论他们是否是可读的。如果元数据损坏,你可以忽略他,你手工提供schema (输入表的每个列的列名)并且只需要沿着页面链表
或者解析IAM页面去读取堆表里面的数据。接下来的几个星期我将会 写一些关于OrcaMDF RawDatabase 的使用场景的博客,其中包括数据损坏
源代码和反馈
我非常兴奋因为最新的RawDatabase 已经添加到OrcaMDF 里面并且我希望不单只只有我一个见证他的威力。
如果你也想试一试,或者有任何想法,建议或者其他反馈,我都很乐意接受。
如果你想试用,在GitHub上签出OrcaMDF项目。一旦这个工具做得比较完美了,我会把他放上去NuGet 。
就好像OrcaMDF一样,在GPL v3 licensed 下发布
第十六篇完

MySQL's position in databases and programming is very important. It is an open source relational database management system that is widely used in various application scenarios. 1) MySQL provides efficient data storage, organization and retrieval functions, supporting Web, mobile and enterprise-level systems. 2) It uses a client-server architecture, supports multiple storage engines and index optimization. 3) Basic usages include creating tables and inserting data, and advanced usages involve multi-table JOINs and complex queries. 4) Frequently asked questions such as SQL syntax errors and performance issues can be debugged through the EXPLAIN command and slow query log. 5) Performance optimization methods include rational use of indexes, optimized query and use of caches. Best practices include using transactions and PreparedStatemen

MySQL is suitable for small and large enterprises. 1) Small businesses can use MySQL for basic data management, such as storing customer information. 2) Large enterprises can use MySQL to process massive data and complex business logic to optimize query performance and transaction processing.

InnoDB effectively prevents phantom reading through Next-KeyLocking mechanism. 1) Next-KeyLocking combines row lock and gap lock to lock records and their gaps to prevent new records from being inserted. 2) In practical applications, by optimizing query and adjusting isolation levels, lock competition can be reduced and concurrency performance can be improved.

MySQL is not a programming language, but its query language SQL has the characteristics of a programming language: 1. SQL supports conditional judgment, loops and variable operations; 2. Through stored procedures, triggers and functions, users can perform complex logical operations in the database.

MySQL is an open source relational database management system, mainly used to store and retrieve data quickly and reliably. Its working principle includes client requests, query resolution, execution of queries and return results. Examples of usage include creating tables, inserting and querying data, and advanced features such as JOIN operations. Common errors involve SQL syntax, data types, and permissions, and optimization suggestions include the use of indexes, optimized queries, and partitioning of tables.

MySQL is an open source relational database management system suitable for data storage, management, query and security. 1. It supports a variety of operating systems and is widely used in Web applications and other fields. 2. Through the client-server architecture and different storage engines, MySQL processes data efficiently. 3. Basic usage includes creating databases and tables, inserting, querying and updating data. 4. Advanced usage involves complex queries and stored procedures. 5. Common errors can be debugged through the EXPLAIN statement. 6. Performance optimization includes the rational use of indexes and optimized query statements.

MySQL is chosen for its performance, reliability, ease of use, and community support. 1.MySQL provides efficient data storage and retrieval functions, supporting multiple data types and advanced query operations. 2. Adopt client-server architecture and multiple storage engines to support transaction and query optimization. 3. Easy to use, supports a variety of operating systems and programming languages. 4. Have strong community support and provide rich resources and solutions.

InnoDB's lock mechanisms include shared locks, exclusive locks, intention locks, record locks, gap locks and next key locks. 1. Shared lock allows transactions to read data without preventing other transactions from reading. 2. Exclusive lock prevents other transactions from reading and modifying data. 3. Intention lock optimizes lock efficiency. 4. Record lock lock index record. 5. Gap lock locks index recording gap. 6. The next key lock is a combination of record lock and gap lock to ensure data consistency.


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

Atom editor mac version download
The most popular open source editor

SAP NetWeaver Server Adapter for Eclipse
Integrate Eclipse with SAP NetWeaver application server.

PhpStorm Mac version
The latest (2018.2.1) professional PHP integrated development tool

Dreamweaver CS6
Visual web development tools

mPDF
mPDF is a PHP library that can generate PDF files from UTF-8 encoded HTML. The original author, Ian Back, wrote mPDF to output PDF files "on the fly" from his website and handle different languages. It is slower than original scripts like HTML2FPDF and produces larger files when using Unicode fonts, but supports CSS styles etc. and has a lot of enhancements. Supports almost all languages, including RTL (Arabic and Hebrew) and CJK (Chinese, Japanese and Korean). Supports nested block-level elements (such as P, DIV),