信号量的解释: 来自百度百科: 信号量(Semaphore),有时被称为信号灯,是在多线程环境下使用的一种设施,是可以用来保证两个或多个关键代码段不被并发调用。在进入一个关键代码段之前,线程必须获取一个信号量;一旦该关键代码段完成了,那么该线程必须释放
信号量的解释:
来自百度百科:
信号量(Semaphore),有时被称为信号灯,是在多线程环境下使用的一种设施,是可以用来保证两个或多个关键代码段不被并发调用。在进入一个关键代码段之前,线程必须获取一个信号量;一旦该关键代码段完成了,那么该线程必须释放信号量。
RT-Thread 的信号量有静态和动态,这里同线程的静态和动态是一个意思。对信号量有两种操作,take 和 release。
程序中,首先初始化信号量为0,这时首先使用take,并只等待10个tick,故一定会超时,因为信号量初始值为0,take不到。然后release一次,信号量便增加1,这时再次take,并且使用的是wait forever 的方式,便一定能得到信号量。
程序:
#include <rtthread.h> static struct rt_semaphore static_sem; static rt_sem_t dynamic_sem = RT_NULL; static rt_uint8_t thread1_stack[1024]; struct rt_thread thread1; static void rt_thread_entry1(void *parameter) { rt_err_t result; rt_tick_t tick; /* static semaphore demo */ tick = rt_tick_get(); /* try to take the sem, wait 10 ticks */ result = rt_sem_take(&static_sem, 10); if (result == -RT_ETIMEOUT) { if (rt_tick_get() - tick != 10) { rt_sem_detach(&static_sem); return ; } rt_kprintf("take semaphore timeout\n"); } else { rt_kprintf("take a static semaphore, failed.\n"); rt_sem_detach(&static_sem); return ; } /* release the semaphore */ rt_sem_release(&static_sem); /* wait the semaphore forever */ result = rt_sem_take(&static_sem, RT_WAITING_FOREVER); if (result != RT_EOK) { rt_kprintf("take a static semaphore, failed.\n"); rt_sem_detach(&static_sem); return ; } rt_kprintf("take a static semaphore, done.\n"); /* detach the semaphore object */ rt_sem_detach(&static_sem); //} /* dynamic thread pointer */ //static void thread2_entry(void *parameter) //{ // rt_err_t result; // rt_tick_t tick; tick = rt_tick_get(); /* try to take the semaphore, wait for 10 ticks */ result = rt_sem_take(dynamic_sem, 10); if (result == -RT_ETIMEOUT) { if (rt_tick_get() - tick != 10) { rt_sem_delete(dynamic_sem); return ; } rt_kprintf("take semaphore timeout\n"); } else { rt_kprintf("take a dynamic semaphore, failed.\n"); rt_sem_delete(dynamic_sem); return ; } /* release the dynamic semaphore */ rt_sem_release(dynamic_sem); /* wait forever */ result = rt_sem_take(dynamic_sem, RT_WAITING_FOREVER); if (result != RT_EOK) { rt_kprintf("take a dynamic semaphore, failed.\n"); rt_sem_delete(dynamic_sem); return ; } rt_kprintf("take a dynamic semaphore, done.\n"); /* delete the semaphore*/ rt_sem_delete(dynamic_sem); } //static rt_thread_t tid = RT_NULL; int rt_application_init() { rt_err_t result; result = rt_sem_init(&static_sem, "ssem", 0, RT_IPC_FLAG_FIFO); if (result != RT_EOK) { rt_kprintf("init static semaphore failed. \n"); return -1; } dynamic_sem = rt_sem_create("dsem", 0, RT_IPC_FLAG_FIFO); if (dynamic_sem == RT_NULL) { rt_kprintf("create dynamic semaphore failed. \n"); return -1; } /* thread1 init */ rt_thread_init(&thread1, "t1", rt_thread_entry1, RT_NULL, &thread1_stack[0], sizeof(thread1_stack), 11, 5 ); rt_thread_startup(&thread1); return 0; }</rtthread.h>
结果为:
take semaphore timeout take a staic semaphore, done. take semaphore timeout take a dynamic semaphore, done.

Stored procedures are precompiled SQL statements in MySQL for improving performance and simplifying complex operations. 1. Improve performance: After the first compilation, subsequent calls do not need to be recompiled. 2. Improve security: Restrict data table access through permission control. 3. Simplify complex operations: combine multiple SQL statements to simplify application layer logic.

The working principle of MySQL query cache is to store the results of SELECT query, and when the same query is executed again, the cached results are directly returned. 1) Query cache improves database reading performance and finds cached results through hash values. 2) Simple configuration, set query_cache_type and query_cache_size in MySQL configuration file. 3) Use the SQL_NO_CACHE keyword to disable the cache of specific queries. 4) In high-frequency update environments, query cache may cause performance bottlenecks and needs to be optimized for use through monitoring and adjustment of parameters.

The reasons why MySQL is widely used in various projects include: 1. High performance and scalability, supporting multiple storage engines; 2. Easy to use and maintain, simple configuration and rich tools; 3. Rich ecosystem, attracting a large number of community and third-party tool support; 4. Cross-platform support, suitable for multiple operating systems.

The steps for upgrading MySQL database include: 1. Backup the database, 2. Stop the current MySQL service, 3. Install the new version of MySQL, 4. Start the new version of MySQL service, 5. Recover the database. Compatibility issues are required during the upgrade process, and advanced tools such as PerconaToolkit can be used for testing and optimization.

MySQL backup policies include logical backup, physical backup, incremental backup, replication-based backup, and cloud backup. 1. Logical backup uses mysqldump to export database structure and data, which is suitable for small databases and version migrations. 2. Physical backups are fast and comprehensive by copying data files, but require database consistency. 3. Incremental backup uses binary logging to record changes, which is suitable for large databases. 4. Replication-based backup reduces the impact on the production system by backing up from the server. 5. Cloud backups such as AmazonRDS provide automation solutions, but costs and control need to be considered. When selecting a policy, database size, downtime tolerance, recovery time, and recovery point goals should be considered.

MySQLclusteringenhancesdatabaserobustnessandscalabilitybydistributingdataacrossmultiplenodes.ItusestheNDBenginefordatareplicationandfaulttolerance,ensuringhighavailability.Setupinvolvesconfiguringmanagement,data,andSQLnodes,withcarefulmonitoringandpe

Optimizing database schema design in MySQL can improve performance through the following steps: 1. Index optimization: Create indexes on common query columns, balancing the overhead of query and inserting updates. 2. Table structure optimization: Reduce data redundancy through normalization or anti-normalization and improve access efficiency. 3. Data type selection: Use appropriate data types, such as INT instead of VARCHAR, to reduce storage space. 4. Partitioning and sub-table: For large data volumes, use partitioning and sub-table to disperse data to improve query and maintenance efficiency.

TooptimizeMySQLperformance,followthesesteps:1)Implementproperindexingtospeedupqueries,2)UseEXPLAINtoanalyzeandoptimizequeryperformance,3)Adjustserverconfigurationsettingslikeinnodb_buffer_pool_sizeandmax_connections,4)Usepartitioningforlargetablestoi


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Dreamweaver Mac version
Visual web development tools

DVWA
Damn Vulnerable Web App (DVWA) is a PHP/MySQL web application that is very vulnerable. Its main goals are to be an aid for security professionals to test their skills and tools in a legal environment, to help web developers better understand the process of securing web applications, and to help teachers/students teach/learn in a classroom environment Web application security. The goal of DVWA is to practice some of the most common web vulnerabilities through a simple and straightforward interface, with varying degrees of difficulty. Please note that this software

Dreamweaver CS6
Visual web development tools

SublimeText3 Linux new version
SublimeText3 Linux latest version

Safe Exam Browser
Safe Exam Browser is a secure browser environment for taking online exams securely. This software turns any computer into a secure workstation. It controls access to any utility and prevents students from using unauthorized resources.
