就像标题呈现的一样,SQL Server 2008中的MERGE语句能做很多事情,它的功能是根据源表对目标表执行插入、更新或删除操作。最典型的应用就是进行两个表的同步。 下面通过一个简单示例来演示MERGE语句的使用方法,假设数据库中有两个表Product及ProductNew,我
就像标题呈现的一样,SQL Server 2008中的MERGE语句能做很多事情,它的功能是根据源表对目标表执行插入、更新或删除操作。最典型的应用就是进行两个表的同步。
下面通过一个简单示例来演示MERGE语句的使用方法,假设数据库中有两个表Product及ProductNew,我们的任务是将Product的数据同步到ProductNew(当然同步可能是每天通过Job来自动完成的,在此我们只关注MERGE的使用)。
以下SQL创建示例表:
--源表
CREATE TABLE Product
(
ProductID varchar(7) NOT NULL PRIMARY KEY,
ProductName varchar(100) NOT NULL,
Price decimal(13,2) DEFAULT 0
);
INSERT INTO Product
Values
("4100037","优盘",50),
("4100038","鼠标",30);
--目标表
CREATE TABLE ProductNew
(
ProductID varchar(7) NOT NULL PRIMARY KEY,
ProductName varchar(100) NOT NULL,
Price decimal(13,2) DEFAULT 0
);
下面再来关注MERGE语句的基本语法:
MERGE 目标表
USING 源表
ON 匹配条件
WHEN MATCHED THEN
语句
WHEN NOT MATCHED THEN
语句;
以上是MERGE的最最基本的语法,语句执行时根据匹配条件的结果,如果在目标表中找到匹配记录则执行WHEN MATCHED THEN后面的语句,如果没有找到匹配记录则执行WHEN NOT MATCHED THEN后面的语句。注意源表可以是表,也可以是一个子查询语句。
格外强调一点,MERGE语句最后的分号是不能省略的!
回到我们的示例,显然Product与ProductNew表的MERGE匹配条件为主键ProductID字段,初始情况下,ProductNew表为空,此时肯定执行的是WHEN NOT MATCHED THEN后的语句,我们先只考虑源表递增的情况,MERGE语句如下:
MERGE ProductNew AS d
USING
Product
AS s
ON s.ProductID = d.ProductId
WHEN NOT MATCHED THEN
INSERT( ProductID,ProductName,Price)
VALUES(s.ProductID,s.ProductName,s.Price);
运行后2行受影响,我们已经将Product表的数据同步到了ProductNew表。
现在,我们更新Product表4100037产品的价格,将其修改为55:
UPDATE Product SET Price=55 WHERE ProductID="4100037";
我们也希望每天同步的时候应该将更新后的价格同步到ProductNew表,显然此时在MERGE语句中应该添加WHEN MATCHED THEN 语句,该语句来更新ProductNew表的价格,添加匹配更新后的MERGE语句:
MERGE ProductNew AS d
USING
Product
AS s
ON s.ProductID = d.ProductId
WHEN NOT MATCHED THEN
INSERT( ProductID,ProductName,Price)
VALUES(s.ProductID,s.ProductName,s.Price)
WHEN MATCHED THEN
UPDATE SET d.ProductName = s.ProductName, d.Price = s.Price;
执行后2行受影响,为什么是两行呢?因为我们的匹配条件只是按ProductID来关联的,这样匹配出来的记录为2行。另外,我们的UPDATE语句里面没有更新ProductID字段,因为这是完全没必要的(如果修改了ProductID字段会直接走到NOT MATCHED)。
现在做个破坏,我们将410037产品删除掉:
DELETE Product WHERE ProductID="4100037";
明显,上面给出的MERGE语句无法同步这种情况,再次回到MERGE语句的定义,对MERGE的WHEN NOT MATCHED THEN语句稍作扩展:
WHEN NOT MATCHED BY TARGET
表示目标表不匹配,BY TARGET是默认的,所以上面我们直接使用WHEN NOT MATCHED THEN
WHEN NOT MATCHED BY SOURCE
表示源表不匹配,即目标表中存在,源表中不存在的情况。
现在我们要完成源表DELETE后,目标表的同步动作,MERGE语句如下:
MERGE ProductNew AS d
USING
Product
AS s
ON s.ProductID = d.ProductId
WHEN NOT MATCHED BY TARGET THEN
INSERT( ProductID,ProductName,Price)
VALUES(s.ProductID,s.ProductName,s.Price)
WHEN NOT MATCHED BY SOURCE THEN
DELETE
WHEN MATCHED THEN
UPDATE SET d.ProductName = s.ProductName, d.Price = s.Price;
上面已经使用到MERGE语句中的INSERT、UPDATE、DELETE语句,这足够完成大多数的同步功能了。当然,MERGE语句还有很多的选项,在此不做详述,请参考MSDN.

The steps for upgrading MySQL database include: 1. Backup the database, 2. Stop the current MySQL service, 3. Install the new version of MySQL, 4. Start the new version of MySQL service, 5. Recover the database. Compatibility issues are required during the upgrade process, and advanced tools such as PerconaToolkit can be used for testing and optimization.

MySQL backup policies include logical backup, physical backup, incremental backup, replication-based backup, and cloud backup. 1. Logical backup uses mysqldump to export database structure and data, which is suitable for small databases and version migrations. 2. Physical backups are fast and comprehensive by copying data files, but require database consistency. 3. Incremental backup uses binary logging to record changes, which is suitable for large databases. 4. Replication-based backup reduces the impact on the production system by backing up from the server. 5. Cloud backups such as AmazonRDS provide automation solutions, but costs and control need to be considered. When selecting a policy, database size, downtime tolerance, recovery time, and recovery point goals should be considered.

MySQLclusteringenhancesdatabaserobustnessandscalabilitybydistributingdataacrossmultiplenodes.ItusestheNDBenginefordatareplicationandfaulttolerance,ensuringhighavailability.Setupinvolvesconfiguringmanagement,data,andSQLnodes,withcarefulmonitoringandpe

Optimizing database schema design in MySQL can improve performance through the following steps: 1. Index optimization: Create indexes on common query columns, balancing the overhead of query and inserting updates. 2. Table structure optimization: Reduce data redundancy through normalization or anti-normalization and improve access efficiency. 3. Data type selection: Use appropriate data types, such as INT instead of VARCHAR, to reduce storage space. 4. Partitioning and sub-table: For large data volumes, use partitioning and sub-table to disperse data to improve query and maintenance efficiency.

TooptimizeMySQLperformance,followthesesteps:1)Implementproperindexingtospeedupqueries,2)UseEXPLAINtoanalyzeandoptimizequeryperformance,3)Adjustserverconfigurationsettingslikeinnodb_buffer_pool_sizeandmax_connections,4)Usepartitioningforlargetablestoi

MySQL functions can be used for data processing and calculation. 1. Basic usage includes string processing, date calculation and mathematical operations. 2. Advanced usage involves combining multiple functions to implement complex operations. 3. Performance optimization requires avoiding the use of functions in the WHERE clause and using GROUPBY and temporary tables.

Efficient methods for batch inserting data in MySQL include: 1. Using INSERTINTO...VALUES syntax, 2. Using LOADDATAINFILE command, 3. Using transaction processing, 4. Adjust batch size, 5. Disable indexing, 6. Using INSERTIGNORE or INSERT...ONDUPLICATEKEYUPDATE, these methods can significantly improve database operation efficiency.

In MySQL, add fields using ALTERTABLEtable_nameADDCOLUMNnew_columnVARCHAR(255)AFTERexisting_column, delete fields using ALTERTABLEtable_nameDROPCOLUMNcolumn_to_drop. When adding fields, you need to specify a location to optimize query performance and data structure; before deleting fields, you need to confirm that the operation is irreversible; modifying table structure using online DDL, backup data, test environment, and low-load time periods is performance optimization and best practice.


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

ZendStudio 13.5.1 Mac
Powerful PHP integrated development environment

MantisBT
Mantis is an easy-to-deploy web-based defect tracking tool designed to aid in product defect tracking. It requires PHP, MySQL and a web server. Check out our demo and hosting services.

SecLists
SecLists is the ultimate security tester's companion. It is a collection of various types of lists that are frequently used during security assessments, all in one place. SecLists helps make security testing more efficient and productive by conveniently providing all the lists a security tester might need. List types include usernames, passwords, URLs, fuzzing payloads, sensitive data patterns, web shells, and more. The tester can simply pull this repository onto a new test machine and he will have access to every type of list he needs.

Notepad++7.3.1
Easy-to-use and free code editor

DVWA
Damn Vulnerable Web App (DVWA) is a PHP/MySQL web application that is very vulnerable. Its main goals are to be an aid for security professionals to test their skills and tools in a legal environment, to help web developers better understand the process of securing web applications, and to help teachers/students teach/learn in a classroom environment Web application security. The goal of DVWA is to practice some of the most common web vulnerabilities through a simple and straightforward interface, with varying degrees of difficulty. Please note that this software
