MapReduce(分布式计算模型)作为Hadoop家族一重要的家庭成员主要用于搜素领域,海量数据计算等问题。 内部模型采用分而治之的思想。MapReduce分为两部分(Map和Reduce)。其中Shuffler是对Reduce的预处理。 map和reduce的数据处理方式均采取键对的方式:即 [k1
MapReduce(分布式计算模型)作为Hadoop家族一重要的家庭成员主要用于搜素领域,海量数据计算等问题。
内部模型采用"分而治之"的思想。MapReduce分为两部分(Map和Reduce)。其中Shuffler是对Reduce的预处理。
map和reduce的数据处理方式均采取键值对的方式:即 [k1,v1]->MAP->[K2,V2]->Reduce->[k3,v3]。
MR执行流程
(1).客户端提交一个mr的jar包给JobClient(提交方式:hadoop jar ...)
(2).JobClient通过RPC和JobTracker进行通信,返回一个存放jar包的地址(HDFS)和jobId
(3).client将jar包写入到HDFS当中(path = hdfs上的地址 + jobId)
(4).开始提交任务(任务的描述信息,不是jar, 包括jobid,jar存放的位置,配置信息等等)
(5).JobTracker进行初始化任务
(6).读取HDFS上的要处理的文件,开始计算输入分片,每一个分片对应一个MapperTask
(7).TaskTracker通过心跳机制领取任务(任务的描述信息)
(8).下载所需的jar,配置文件等
(9).TaskTracker启动一个java child子进程,用来执行具体的任务(MapperTask或ReducerTask)
(10).将结果写入到HDFS当中
在hadoop2.0以上版本中JobTracker取名为RM(resourceManage) TastTracker取名为NM(nodeManage)
mapReduce操作实现wordcount功能(即从文本中读取内容,计算出每个单词出现的次数)
程序分为3个类(自定义MAP方法功能实现,自定义REDUCE方法功能实现,最后类拼凑成mapreduce模式导成jar包,在HDFS分布式功能中实现)
1.WCMapper类(实现map)
import java.io.IOException;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;
/*
* 给wordcount写mapper
* 定义mapper
* KEYIN:k1的类型
* VALUEIN:v1的类型
*
* 重写map方法
* hadoop没有使用jdk默认的序列化机制(long->longwriteable String->Text)
*/
public class WCMapper extends Mapper
@Override
protected void map(LongWritable key, Text value,
Mapper
throws IOException, InterruptedException {
// TODO Auto-generated method stub
// 接收信息V1
String line = value.toString();
// 切分数据
String[] words = line.split(" ");
// 循环
for (String w : words) {
// 出现一次记一个1,输出
// 构一个新的key,value
context.write(new Text(w), new LongWritable(1));
}
}
}
2.WCReducer类实现reduce功能
import java.io.IOException;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;
/*
* KEYIN k2的类型
* VALUEIN v2的类型
*
* 重写reducer方法
*/
public class WCReducer extends Reducer
@Override
protected void reduce(Text k2, Iterable
Reducer
throws IOException, InterruptedException {
// 接收数据
Text k3 = k2;
// 定义一个计数器
Long count = (long) 0;
// 循环v2s
for (LongWritable i : v2s) {
count += i.get();
}
// 输出
context.write(k3, new LongWritable(count));
}
}
3.wordCount类。拼凑前两个类,符合mapreduce格式
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
/*
* mapReduce
*
* 组装自定义的map和reduce
*/
public class wordCount {
public static void main(String[] args) throws Exception {
// Job job=Job.instance(new Configuration()); //版本hadoop2
Job job = new Job(new Configuration()); // 版本hadoop1
// 4.注意---将main方法中的类设进去
job.setJarByClass(wordCount.class);
// 1.设置自定义Mapper
job.setMapperClass(WCMapper.class);
job.setMapOutputKeyClass(Text.class);
job.setMapOutputValueClass(LongWritable.class);
// 设置mapper读入的path(hdfs路径)
FileInputFormat.setInputPaths(job, new Path("/words.txt"));
// 2.设置reduce
job.setReducerClass(WCReducer.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(LongWritable.class);
FileOutputFormat.setOutputPath(job, new Path("/WcountResult"));
// 3.提交
job.waitForCompletion(true); // 打印进度和详情
}
}

Stored procedures are precompiled SQL statements in MySQL for improving performance and simplifying complex operations. 1. Improve performance: After the first compilation, subsequent calls do not need to be recompiled. 2. Improve security: Restrict data table access through permission control. 3. Simplify complex operations: combine multiple SQL statements to simplify application layer logic.

The working principle of MySQL query cache is to store the results of SELECT query, and when the same query is executed again, the cached results are directly returned. 1) Query cache improves database reading performance and finds cached results through hash values. 2) Simple configuration, set query_cache_type and query_cache_size in MySQL configuration file. 3) Use the SQL_NO_CACHE keyword to disable the cache of specific queries. 4) In high-frequency update environments, query cache may cause performance bottlenecks and needs to be optimized for use through monitoring and adjustment of parameters.

The reasons why MySQL is widely used in various projects include: 1. High performance and scalability, supporting multiple storage engines; 2. Easy to use and maintain, simple configuration and rich tools; 3. Rich ecosystem, attracting a large number of community and third-party tool support; 4. Cross-platform support, suitable for multiple operating systems.

The steps for upgrading MySQL database include: 1. Backup the database, 2. Stop the current MySQL service, 3. Install the new version of MySQL, 4. Start the new version of MySQL service, 5. Recover the database. Compatibility issues are required during the upgrade process, and advanced tools such as PerconaToolkit can be used for testing and optimization.

MySQL backup policies include logical backup, physical backup, incremental backup, replication-based backup, and cloud backup. 1. Logical backup uses mysqldump to export database structure and data, which is suitable for small databases and version migrations. 2. Physical backups are fast and comprehensive by copying data files, but require database consistency. 3. Incremental backup uses binary logging to record changes, which is suitable for large databases. 4. Replication-based backup reduces the impact on the production system by backing up from the server. 5. Cloud backups such as AmazonRDS provide automation solutions, but costs and control need to be considered. When selecting a policy, database size, downtime tolerance, recovery time, and recovery point goals should be considered.

MySQLclusteringenhancesdatabaserobustnessandscalabilitybydistributingdataacrossmultiplenodes.ItusestheNDBenginefordatareplicationandfaulttolerance,ensuringhighavailability.Setupinvolvesconfiguringmanagement,data,andSQLnodes,withcarefulmonitoringandpe

Optimizing database schema design in MySQL can improve performance through the following steps: 1. Index optimization: Create indexes on common query columns, balancing the overhead of query and inserting updates. 2. Table structure optimization: Reduce data redundancy through normalization or anti-normalization and improve access efficiency. 3. Data type selection: Use appropriate data types, such as INT instead of VARCHAR, to reduce storage space. 4. Partitioning and sub-table: For large data volumes, use partitioning and sub-table to disperse data to improve query and maintenance efficiency.

TooptimizeMySQLperformance,followthesesteps:1)Implementproperindexingtospeedupqueries,2)UseEXPLAINtoanalyzeandoptimizequeryperformance,3)Adjustserverconfigurationsettingslikeinnodb_buffer_pool_sizeandmax_connections,4)Usepartitioningforlargetablestoi


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

SublimeText3 Chinese version
Chinese version, very easy to use

SAP NetWeaver Server Adapter for Eclipse
Integrate Eclipse with SAP NetWeaver application server.

SublimeText3 English version
Recommended: Win version, supports code prompts!

mPDF
mPDF is a PHP library that can generate PDF files from UTF-8 encoded HTML. The original author, Ian Back, wrote mPDF to output PDF files "on the fly" from his website and handle different languages. It is slower than original scripts like HTML2FPDF and produces larger files when using Unicode fonts, but supports CSS styles etc. and has a lot of enhancements. Supports almost all languages, including RTL (Arabic and Hebrew) and CJK (Chinese, Japanese and Korean). Supports nested block-level elements (such as P, DIV),

SecLists
SecLists is the ultimate security tester's companion. It is a collection of various types of lists that are frequently used during security assessments, all in one place. SecLists helps make security testing more efficient and productive by conveniently providing all the lists a security tester might need. List types include usernames, passwords, URLs, fuzzing payloads, sensitive data patterns, web shells, and more. The tester can simply pull this repository onto a new test machine and he will have access to every type of list he needs.
