search
HomeDatabaseMysql TutorialORACLE分组统计

ORACLE分组统计

Jun 07, 2016 pm 03:07 PM
oracleGroupCommunitystatisticsEnter

欢迎进入Oracle社区论坛,与200万技术人员互动交流 >>进入 ROLLUP和CUBE语句。 Oracle的GROUP BY语句除了最基本的语法外,还支持ROLLUP和CUBE语句。如果是ROLLUP(A, B, C)的话,首先会对(A、B、C)进行GROUP BY,然后对(A、B)进行GROUP BY,然后是(A)

欢迎进入Oracle社区论坛,与200万技术人员互动交流 >>进入

    ROLLUP和CUBE语句。

    Oracle的GROUP

    BY语句除了最基本的语法外,还支持ROLLUP和CUBE语句。如果是ROLLUP(A, B, C)的话,首先会对(A、B、C)进行GROUP

    BY,然后对(A、B)进行GROUP BY,然后是(A)进行GROUP BY,最后对全表进行GROUP BY操作。如果是GROUP BY

    CUBE(A, B, C),则首先会对(A、B、C)进行GROUP

    BY,然后依次是(A、B),(A、C),(A),(B、C),(B),(C),最后对全表进行GROUP BY操作。

    grouping_id()可以美化效果:

    Oracle的GROUP BY语句除了最基本的语法外,还支持ROLLUP和CUBE语句。

    除本文内容外,你还可参考:

    分析函数参考手册:

    http://xsb.itpub.net/post/419/33028

    分析函数使用例子介绍:

    http://xsb.itpub.net/post/419/44634

    SQL> create table t as select * from dba_indexes;

    表已创建。

    SQL> select index_type, status, count(*) from t group by index_type, status;

    INDEX_TYPE STATUS COUNT(*)

    --------------------------- -------- ----------

    LOB VALID 51

    NORMAL N/A 25

    NORMAL VALID 479

    CLUSTER VALID 11

    下面来看看ROLLUP和CUBE语句的执行结果。

    SQL> select index_type, status, count(*) from t group by rollup(index_type, status);

    INDEX_TYPE STATUS COUNT(*)

    --------------------------- -------- ----------

    LOB VALID 51

    LOB 51

    NORMAL N/A 25

    NORMAL VALID 479

    NORMAL 504

    CLUSTER VALID 11

    CLUSTER 11

    566

    已选择8行。

    SQL> select index_type, status, count(*) from t group by cube(index_type, status);

    INDEX_TYPE STATUS COUNT(*)

    --------------------------- -------- ----------

    566

    N/A 25

    VALID 541

    LOB 51

    LOB VALID 51

    NORMAL 504

    NORMAL N/A 25

    NORMAL VALID 479

    CLUSTER 11

    CLUSTER VALID 11

    已选择10行。

    查询结果不是很一目了然,下面通过Oracle提供的函数GROUPING来整理一下查询结果。

    SQL> select grouping(index_type) g_ind, grouping(status) g_st, index_type, status, count(*)

    2 from t group by rollup(index_type, status) order by 1, 2;

    G_IND G_ST INDEX_TYPE STATUS COUNT(*)

    ---------- ---------- --------------------------- -------- ----------

    0 0 LOB VALID 51

    0 0 NORMAL N/A 25

    0 0 NORMAL VALID 479

    0 0 CLUSTER VALID 11

    0 1 LOB 51

    0 1 NORMAL 504

    0 1 CLUSTER 11

    1 1 566

    已选择8行。

    这个查询结果就直观多了,和不带ROLLUP语句的GROUP BY相比,ROLLUP增加了对INDEX_TYPE的GROUP BY统计和对所有记录的GROUP BY统计。

    也就是说,如果是ROLLUP(A, B, C)的话,首先会对(A、B、C)进行GROUP BY,然后对(A、B)进行GROUP BY,然后是(A)进行GROUP BY,最后对全表进行GROUP BY操作。

    下面看看CUBE语句。

    SQL> select grouping(index_type) g_ind, grouping(status) g_st, index_type, status, count(*)

    2 from t group by cube(index_type, status) order by 1, 2;

    G_IND G_ST INDEX_TYPE STATUS COUNT(*)

    ---------- ---------- --------------------------- -------- ----------

    0 0 LOB VALID 51

    0 0 NORMAL N/A 25

    0 0 NORMAL VALID 479

    0 0 CLUSTER VALID 11

    0 1 LOB 51

    0 1 NORMAL 504

    0 1 CLUSTER 11

    1 0 N/A 25

    1 0 VALID 541

    1 1 566

    已选择10行。

    和ROLLUP相比,CUBE又增加了对STATUS列的GROUP BY统计。

    如果是GROUP BY CUBE(A, B, C),则首先会对(A、B、C)进行GROUP BY,然后依次是(A、B),(A、C),(A),(B、C),(B),(C),最后对全表进行GROUP BY操作。

    除了使用GROUPING函数,还可以使用GROUPING_ID来标识GROUP BY结果。

    SQL> select grouping_id(index_type, status) g_ind, index_type, status, count(*)

    2 from t group by rollup(index_type, status) order by 1;

    G_IND INDEX_TYPE STATUS COUNT(*)

    ---------- --------------------------- -------- ----------

    0 LOB VALID 51

    0 NORMAL N/A 25

    0 NORMAL VALID 479

    0 CLUSTER VALID 11

    1 LOB 51

    1 NORMAL 504

    1 CLUSTER 11

    3 566

    已选择8行。

    SQL> select grouping_id(index_type, status) g_ind, index_type, status, count(*)

    2 from t group by cube(index_type, status) order by 1;

    G_IND INDEX_TYPE STATUS COUNT(*)

    ---------- --------------------------- -------- ----------

    0 LOB VALID 51

    0 NORMAL N/A 25

    0 NORMAL VALID 479

    0 CLUSTER VALID 11

    1 LOB 51

    1 NORMAL 504

    1 CLUSTER 11

    2 N/A 25

    2 VALID 541

    3 566

    已选择10行。

    grouping_id()可以美化效果:

    select DECODE(GROUPING_ID(C1), 1, '合计', C1) D1,

    DECODE(GROUPING_ID(C1, C2), 1, '小计', C2) D2,

    DECODE(GROUPING_ID(C1, C2, C1 + C2), 1, '小计', C1 + C2) D3,

    count(*),

    GROUPING_ID(C1, C2, C1 + C2, C1 + 1, C2 + 1),

    GROUPING_ID(C1)

    from T2

    group by rollup(C1, C2, C1 + C2, C1 + 1, C2 + 1);

    ===========================================================

    1.

    报表合计专用的

    Rollup

    函数

    销售报表

    以往的查询

    SQL:

    Select

    area,month,sum(money) from SaleOrder group by area,month

[1] [2] [3] 

ORACLE分组统计

Statement
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn
What Are the Limitations of Using Views in MySQL?What Are the Limitations of Using Views in MySQL?May 14, 2025 am 12:10 AM

MySQLviewshavelimitations:1)Theydon'tsupportallSQLoperations,restrictingdatamanipulationthroughviewswithjoinsorsubqueries.2)Theycanimpactperformance,especiallywithcomplexqueriesorlargedatasets.3)Viewsdon'tstoredata,potentiallyleadingtooutdatedinforma

Securing Your MySQL Database: Adding Users and Granting PrivilegesSecuring Your MySQL Database: Adding Users and Granting PrivilegesMay 14, 2025 am 12:09 AM

ProperusermanagementinMySQLiscrucialforenhancingsecurityandensuringefficientdatabaseoperation.1)UseCREATEUSERtoaddusers,specifyingconnectionsourcewith@'localhost'or@'%'.2)GrantspecificprivilegeswithGRANT,usingleastprivilegeprincipletominimizerisks.3)

What Factors Influence the Number of Triggers I Can Use in MySQL?What Factors Influence the Number of Triggers I Can Use in MySQL?May 14, 2025 am 12:08 AM

MySQLdoesn'timposeahardlimitontriggers,butpracticalfactorsdeterminetheireffectiveuse:1)Serverconfigurationimpactstriggermanagement;2)Complextriggersincreasesystemload;3)Largertablesslowtriggerperformance;4)Highconcurrencycancausetriggercontention;5)M

MySQL: Is it safe to store BLOB?MySQL: Is it safe to store BLOB?May 14, 2025 am 12:07 AM

Yes,it'ssafetostoreBLOBdatainMySQL,butconsiderthesefactors:1)StorageSpace:BLOBscanconsumesignificantspace,potentiallyincreasingcostsandslowingperformance.2)Performance:LargerrowsizesduetoBLOBsmayslowdownqueries.3)BackupandRecovery:Theseprocessescanbe

MySQL: Adding a user through a PHP web interfaceMySQL: Adding a user through a PHP web interfaceMay 14, 2025 am 12:04 AM

Adding MySQL users through the PHP web interface can use MySQLi extensions. The steps are as follows: 1. Connect to the MySQL database and use the MySQLi extension. 2. Create a user, use the CREATEUSER statement, and use the PASSWORD() function to encrypt the password. 3. Prevent SQL injection and use the mysqli_real_escape_string() function to process user input. 4. Assign permissions to new users and use the GRANT statement.

MySQL: BLOB and other no-sql storage, what are the differences?MySQL: BLOB and other no-sql storage, what are the differences?May 13, 2025 am 12:14 AM

MySQL'sBLOBissuitableforstoringbinarydatawithinarelationaldatabase,whileNoSQLoptionslikeMongoDB,Redis,andCassandraofferflexible,scalablesolutionsforunstructureddata.BLOBissimplerbutcanslowdownperformancewithlargedata;NoSQLprovidesbetterscalabilityand

MySQL Add User: Syntax, Options, and Security Best PracticesMySQL Add User: Syntax, Options, and Security Best PracticesMay 13, 2025 am 12:12 AM

ToaddauserinMySQL,use:CREATEUSER'username'@'host'IDENTIFIEDBY'password';Here'showtodoitsecurely:1)Choosethehostcarefullytocontrolaccess.2)SetresourcelimitswithoptionslikeMAX_QUERIES_PER_HOUR.3)Usestrong,uniquepasswords.4)EnforceSSL/TLSconnectionswith

MySQL: How to avoid String Data Types common mistakes?MySQL: How to avoid String Data Types common mistakes?May 13, 2025 am 12:09 AM

ToavoidcommonmistakeswithstringdatatypesinMySQL,understandstringtypenuances,choosetherighttype,andmanageencodingandcollationsettingseffectively.1)UseCHARforfixed-lengthstrings,VARCHARforvariable-length,andTEXT/BLOBforlargerdata.2)Setcorrectcharacters

See all articles

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

Video Face Swap

Video Face Swap

Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Zend Studio 13.0.1

Zend Studio 13.0.1

Powerful PHP integrated development environment

Atom editor mac version download

Atom editor mac version download

The most popular open source editor

VSCode Windows 64-bit Download

VSCode Windows 64-bit Download

A free and powerful IDE editor launched by Microsoft

Safe Exam Browser

Safe Exam Browser

Safe Exam Browser is a secure browser environment for taking online exams securely. This software turns any computer into a secure workstation. It controls access to any utility and prevents students from using unauthorized resources.

SublimeText3 Mac version

SublimeText3 Mac version

God-level code editing software (SublimeText3)