欢迎进入Oracle社区论坛,与200万技术人员互动交流 >>进入 SQL exec :v := 2; PL/SQL 过程已成功完成。 SQL select count(*) from acs_test_tab where record_type = :v; COUNT(*) ---------- 50000 SQL select * from table(dbms_xplan.display_cursor
欢迎进入Oracle社区论坛,与200万技术人员互动交流 >>进入
SQL> exec :v := 2;
PL/SQL 过程已成功完成。
SQL> select count(*) from acs_test_tab where record_type = :v;
COUNT(*)
----------
50000
SQL> select * from table(dbms_xplan.display_cursor(null,null,'advanced'));
PLAN_TABLE_OUTPUT
----------------------------------------------------------------------------------------------------
SQL_ID3rg5r8sghcvb3, child number 0
-------------------------------------
select count(*) from acs_test_tab where record_type = :v
Plan hash value: 2957754476
----------------------------------------------------------------------------------------------------
| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |
----------------------------------------------------------------------------------------------------
| 0 | SELECT STATEMENT | | | | 136 (100)| |
| 1 | SORT AGGREGATE | | 1 | 4 || |
|* 2 | INDEX FAST FULL SCAN| ACS_TEST_TAB_RECORD_TYPE_I | 48031 | 187K| 136 (1)| 00:00:02 |
----------------------------------------------------------------------------------------------------
Peeked Binds (identified by position):
--------------------------------------
1 - :V (NUMBER): 2 --绑定变量窥探,绑定变量会影响最初硬解析的执行计划
Predicate Information (identified by operation id):
---------------------------------------------------
2 - filter("RECORD_TYPE"=:V)
已选择49行。
使用绑定变量窥测的好处是:可以帮助优化器在第一次硬解析时选择最优的执行计划。但是同时这也是其弊端:在第一次硬解析后,后面发生的所有解析都会使用第一次硬解析生成的执行计划,如果数据的分布是均匀的,问题不大,如果数据分布式倾斜的,那么第一次硬解析生成的执行计划未必是最优的,甚至可能是非常糟糕的。例如:
SQL> show parameter optimizer_feat
NAME TYPE VALUE
------------------------------------ ----------- ------------------------------
optimizer_features_enable string 11.2.0.3.1
SQL> alter system flush shared_pool;
系统已更改。
SQL> var v number;
SQL> exec :v := 2;
PL/SQL 过程已成功完成。
SQL> select count(*) from acs_test_tab where record_type = :v;
COUNT(*)
----------
50000
SQL> select * from table(dbms_xplan.display_cursor);
PLAN_TABLE_OUTPUT
----------------------------------------------------------------------------------------------------
SQL_ID3rg5r8sghcvb3, child number 0
-------------------------------------
select count(*) from acs_test_tab where record_type = :v
Plan hash value: 2957754476
----------------------------------------------------------------------------------------------------
| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |
----------------------------------------------------------------------------------------------------
| 0 | SELECT STATEMENT | | | | 136 (100)| |
| 1 | SORT AGGREGATE | | 1 | 4 || |
|* 2 | INDEX FAST FULL SCAN| ACS_TEST_TAB_RECORD_TYPE_I | 48031 | 187K| 136 (1)| 00:00:02 |
----------------------------------------------------------------------------------------------------
Predicate Information (identified by operation id):
---------------------------------------------------
2 - filter("RECORD_TYPE"=:V)
已选择19行。
SQL> exec :v := 1
PL/SQL 过程已成功完成。
SQL> select count(*) from acs_test_tab where record_type = :v;
COUNT(*)
----------
1
SQL> select * from table(dbms_xplan.display_cursor);
PLAN_TABLE_OUTPUT
----------------------------------------------------------------------------------------------------
SQL_ID3rg5r8sghcvb3, child number 0
-------------------------------------
select count(*) from acs_test_tab where record_type = :v
Plan hash value: 2957754476
----------------------------------------------------------------------------------------------------
| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |
----------------------------------------------------------------------------------------------------
| 0 | SELECT STATEMENT | | | | 136 (100)| |
| 1 | SORT AGGREGATE | | 1 | 4 || |
|* 2 | INDEX FAST FULL SCAN| ACS_TEST_TAB_RECORD_TYPE_I | 48031 | 187K| 136 (1)| 00:00:02 |
----------------------------------------------------------------------------------------------------
Predicate Information (identified by operation id):
---------------------------------------------------
2 - filter("RECORD_TYPE"=:V)
已选择19行。
SQL> select count(*) from acs_test_tab where record_type = 1;
COUNT(*)
----------
1
SQL> select * from table(dbms_xplan.display_cursor);
PLAN_TABLE_OUTPUT
----------------------------------------------------------------------------------------------------
SQL_ID1pxm87f6yd0bp, child number 0
-------------------------------------
select count(*) from acs_test_tab where record_type = 1
Plan hash value: 2956728990
------------------------------------------------------------------------------------------------
| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |
------------------------------------------------------------------------------------------------
| 0 | SELECT STATEMENT | | | | 3 (100)| |
| 1 | SORT AGGREGATE | | 1 | 4 | | |
|* 2 | INDEX RANGE SCAN| ACS_TEST_TAB_RECORD_TYPE_I | 1 | 4 | 3 (0)| 00:00:01 |
------------------------------------------------------------------------------------------------
Predicate Information (identified by operation id):
---------------------------------------------------
2 - access("RECORD_TYPE"=1)
已选择19行。
对于变量v的取值为1的执行计划和采用常量1的执行计划性能差距还是比较大的。
总结:oracle在9i后引入变量窥测技术,该技术对于数据分布均匀的数据是非常合适的,但是对于分布倾斜的数据或者在OLAP系统中是不建议使用的。
[1] [2]

In database optimization, indexing strategies should be selected according to query requirements: 1. When the query involves multiple columns and the order of conditions is fixed, use composite indexes; 2. When the query involves multiple columns but the order of conditions is not fixed, use multiple single-column indexes. Composite indexes are suitable for optimizing multi-column queries, while single-column indexes are suitable for single-column queries.

To optimize MySQL slow query, slowquerylog and performance_schema need to be used: 1. Enable slowquerylog and set thresholds to record slow query; 2. Use performance_schema to analyze query execution details, find out performance bottlenecks and optimize.

MySQL and SQL are essential skills for developers. 1.MySQL is an open source relational database management system, and SQL is the standard language used to manage and operate databases. 2.MySQL supports multiple storage engines through efficient data storage and retrieval functions, and SQL completes complex data operations through simple statements. 3. Examples of usage include basic queries and advanced queries, such as filtering and sorting by condition. 4. Common errors include syntax errors and performance issues, which can be optimized by checking SQL statements and using EXPLAIN commands. 5. Performance optimization techniques include using indexes, avoiding full table scanning, optimizing JOIN operations and improving code readability.

MySQL asynchronous master-slave replication enables data synchronization through binlog, improving read performance and high availability. 1) The master server record changes to binlog; 2) The slave server reads binlog through I/O threads; 3) The server SQL thread applies binlog to synchronize data.

MySQL is an open source relational database management system. 1) Create database and tables: Use the CREATEDATABASE and CREATETABLE commands. 2) Basic operations: INSERT, UPDATE, DELETE and SELECT. 3) Advanced operations: JOIN, subquery and transaction processing. 4) Debugging skills: Check syntax, data type and permissions. 5) Optimization suggestions: Use indexes, avoid SELECT* and use transactions.

The installation and basic operations of MySQL include: 1. Download and install MySQL, set the root user password; 2. Use SQL commands to create databases and tables, such as CREATEDATABASE and CREATETABLE; 3. Execute CRUD operations, use INSERT, SELECT, UPDATE, DELETE commands; 4. Create indexes and stored procedures to optimize performance and implement complex logic. With these steps, you can build and manage MySQL databases from scratch.

InnoDBBufferPool improves the performance of MySQL databases by loading data and index pages into memory. 1) The data page is loaded into the BufferPool to reduce disk I/O. 2) Dirty pages are marked and refreshed to disk regularly. 3) LRU algorithm management data page elimination. 4) The read-out mechanism loads the possible data pages in advance.

MySQL is suitable for beginners because it is simple to install, powerful and easy to manage data. 1. Simple installation and configuration, suitable for a variety of operating systems. 2. Support basic operations such as creating databases and tables, inserting, querying, updating and deleting data. 3. Provide advanced functions such as JOIN operations and subqueries. 4. Performance can be improved through indexing, query optimization and table partitioning. 5. Support backup, recovery and security measures to ensure data security and consistency.


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

SublimeText3 Linux new version
SublimeText3 Linux latest version

Zend Studio 13.0.1
Powerful PHP integrated development environment

SublimeText3 Chinese version
Chinese version, very easy to use

VSCode Windows 64-bit Download
A free and powerful IDE editor launched by Microsoft

mPDF
mPDF is a PHP library that can generate PDF files from UTF-8 encoded HTML. The original author, Ian Back, wrote mPDF to output PDF files "on the fly" from his website and handle different languages. It is slower than original scripts like HTML2FPDF and produces larger files when using Unicode fonts, but supports CSS styles etc. and has a lot of enhancements. Supports almost all languages, including RTL (Arabic and Hebrew) and CJK (Chinese, Japanese and Korean). Supports nested block-level elements (such as P, DIV),